广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题含解析_第1页
广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题含解析_第2页
广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题含解析_第3页
广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题含解析_第4页
广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳东广雅中学2025届数学高一上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若两平行直线与之间的距离是,则A.0 B.1C.-2 D.-12.某同学参加研究性学习活动,得到如下实验数据:x1.02.04.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A. B.C. D.3.若,求()A. B.C. D.4.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则5.“是”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要6.已知向量,,且,若,均为正数,则的最大值是A. B.C. D.7.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.8.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增9.设,且,则等于()A.100 B.C. D.10.弧长为3,圆心角为的扇形面积为A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____12.已知角的顶点为坐标原点,始边为轴的正半轴,终边经过点,则___________.13.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____14.已知直线与圆相切,则的值为________15.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)16.下列五个结论:集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;函数的定义域为,则函数的定义域也是;存在实数,使得成立;是函数的对称轴方程;曲线和直线的公共点个数为m,则m不可能为1;其中正确有______写出所有正确的序号三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围18.计算下列各式:(1)(式中字母均为正数);(2).19.如图为函数的一个周期内的图象.(1)求函数的解析式及单调递减区间;(2)当时,求的值域.20.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.21.已知函数.(1)求的定义域;(2)讨论的单调性;(3)求在区间[,2]上的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】∵l1∥l2,∴n=-4,l2方程可化为为x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.点睛:两平行线间距离公式是对两平行线方程分别为,,则距离为,要注意两直线方程中的系数要分别相等,否则不好应用此公式求距离2、A【解析】由表中数据的增大趋势和函数的单调性判断可得选项.【详解】解:由表中的数据看出:y随x的增大而增大,且增大的幅度越来越小,而函数,在的增大幅度越来越大,函数呈线性增大,只有函数与已知数据的增大趋势接近,故选:A.3、A【解析】根据,求得,再利用指数幂及对数的运算即可得出答案.【详解】解:因为,所以,所以.故选:A.4、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力5、A【解析】根据充分必要条件的定义判断【详解】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x=1或x=3,不是必要条件.故选:A.6、C【解析】利用向量共线定理可得2x+3y=5,再利用基本不等式即可得出【详解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,当且仅当3y=2x时取等号故选C.点睛】本题考查了向量共线定理和基本不等式,属于中档题7、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.8、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.9、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C10、B【解析】弧长为3,圆心角为,故答案为B二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.12、【解析】利用三角函数定义求出、的值,结合诱导公式可求得所求代数式的值.【详解】由三角函数的定义可得,,因此,.故答案为:.13、【解析】求出的坐标后可得的直线方程.【详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:14、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:215、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④16、【解析】由,,结合映射的定义可判断;由由,解不等式可判断;由辅助角公式和正弦函数的值域,可判断;由正弦函数的对称轴,可判断;由的图象可判断交点个数,可判断【详解】由于,,B中无元素对应,故错误;函数的定义域为,由,可得,则函数的定义域也是,故正确;由于的最大值为,,故不正确;由为最小值,是函数的对称轴方程,故正确;曲线和直线的公共点个数为m,如图所示,m可能为0,2,3,4,则m不可能为1,故正确,故答案为【点睛】本题主要考查函数的定义域、值域和对称性、图象交点个数,考查运算能力和推理能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【详解】Ⅰ函数有“飘移点”,函数没有“飘移点”,证明如下:设在定义域内有“飘移点”,所以:,即:,解得:,所以函数在定义域内有“飘移点”是0;设函数有“飘移点”,则,即由此方程无实根,与题设矛盾,所以函数没有飘移点Ⅱ函数的定义域是,因为函数有“飘移点”,所以:,即:,化简可得:,可得:,因为,所以:,所以:,因为当时,方程无解,所以,所以,因为函数的定义域是,所以:,即:,因为,所以,即:,所以当时,函数有“飘移点”【点睛】本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,由转化为关于方程在有解是本题关键.18、(1);(2).【解析】(1)根据给定条件利用指数运算法则化简作答.(2)根据给定条件,利用对数换底公式及对数运算性质计算作答.【小问1详解】依题意,.【小问2详解】.19、(1),;(2).【解析】(1)由图可求出,令,即可求出单调递减区间;(2)由题可得,则可求得值域.【详解】(1)由题图,知,所以,所以.将点(-1,0)代入,得.因为,所以,所以.令,得.所以的单调递减区间为.(2)当时,,此时,则,即的值域为.【点睛】方法点睛:根据三角函数部分图象求解析式方法:(1)根据图象的最值可求出A;(2)求出函数的周期,利用求出;(3)取点代入函数可求得.20、(1)(2)【解析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论