版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省忻州市静乐一中高一上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④2.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.3.设,且,则的最小值是()A. B.8C. D.164.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.5.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④6.已知弧长为cm的弧所对的圆心角为,则这条弧所在的扇形面积为()cm2A. B.C. D.7.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.不等式成立x的取值集合为()A. B.C. D.9.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.10.下列命题不正确的是()A.若,则的最大值为1 B.若,则的最小值为4C.若,则的最小值为1 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______12.已知幂函数y=xα的图象经过点2,8,那么13.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.14.已知,均为正数,且,则的最大值为____,的最小值为____.15.如图,在正六边形ABCDEF中,记向量,,则向量______.(用,表示)16.的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数同时满足下列四个条件中的三个:①当时,函数值为0;②的最大值为;③的图象可由的图象平移得到;④函数的最小正周期为.(1)请选出这三个条件并求出函数的解析式;(2)对于给定函数,求该函数的最小值.18.设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值19.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围20.设全集,,.求,,,21.袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.2、C【解析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.3、B【解析】转化原式为,结合均值不等式即得解【详解】由题意,故则当且仅当,即时等号成立故选:B4、D【解析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【点睛】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.5、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.6、C【解析】根据弧长计算出半径,再利用面积公式得到答案.【详解】弧长为cm的弧所对的圆心角为,则故选【点睛】本题考查了扇形面积,求出半径是解题的关键.7、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.8、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.9、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.10、D【解析】选项A、B、C通过给定范围求解对应的值域即可判断正误,选项D通过移向做差,化简合并,即可判断.【详解】对于A,若,则,即的最大值为1,故A正确;对于B,若,则,当且仅当,即时取等号,所以最小值为4,故B正确;对于C,若,则,即的最小值为1,故C正确;对于D,∵,,∴,故D不正确故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:12、3【解析】根据幂函数y=xα的图象经过点2,8,由2【详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:313、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.14、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.15、##【解析】由正六边形的性质:三条不相邻的三边经过平移可成等边三角形,即可得,进而得到结果.【详解】由正六边形的性质知:,∴.故答案为:.16、11【解析】进行对数和分数指数幂的运算即可【详解】原式故答案为:11三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择①②④三个条件,(2)【解析】(1)根据各条件之间的关系,可确定最大值1与②④矛盾,故③不符合题意,从而确定①②④三个条件;(2)将化简为,再通过换元转化为二次函数问题再求解.【小问1详解】①由条件③可知,函数的周期,最大值为1与②④矛盾,故③不符合题意.选择①②④三个条件.由②得,由④中,知,则,由①知,解得,又,则.所求函数表达式为.【小问2详解】由,令,那么,令,其对称轴为.当时,即时,在上单调递增,则;当时,即时,在上单调递减,在上单调递增,则;当时,即时,在上单调递减.则,综上所述可得18、(1);(2)2【解析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数,再根据奇偶性与单调性即可解出不等式;(2)由(1)得,,令,由得,利用换元法转化为二次函数的最值,再分类讨论即可求出答案【详解】解:(1)由题意,得,即,解得,由,得,即,解得,或(舍去),∴,∴函数在上为增函数,由,得∴,解得,或,∴的取值范围是;(2)由(1)得,,令,由得,,∴函数转化为,对称轴,①当时,,即,解得,或(舍去);②当时,,解得(舍去);综上:【点睛】本题主要考查函数奇偶性与单调性的综合应用,考查二次函数的最值问题,考查转化与化归思想,考查分类讨论思想,属于中档题19、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是20、或,,,或【解析】依据补集定义求得,再依据交集定义求得;依据交集定义求得,再依据补集定义求得.【详解】,,,则或,则,则或21、(1)答案见解析;(2);(3).【解析】(1)将1个红球记为个白球记为个黑球记为,进而列举出所有可能性,进而得到样本空间;(2)由题意,有1红1白,1红1黑,1白1黑,共三大类情况,由(1),列举出所有可能性,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋买卖合同中的房屋抵押及解押约定3篇
- 二零二五河南事业单位100人招聘项目合同执行标准3篇
- 二零二五版建筑工程项目现场勘察与监测服务合同3篇
- 二零二五版混凝土结构防雷接地施工合同2篇
- 二零二五年度草场承包管理与开发合同范本3篇
- 二零二五版国际贸易实务实验报告与国际贸易实务实训合同3篇
- 二零二五年度虚拟现实(VR)技术研发合同3篇
- 二零二五年度特种货物安全运输服务合同范本2篇
- 二零二五年度体育设施建设与运营管理复杂多条款合同3篇
- 二零二五年度电梯门套安装与安全性能检测合同3篇
- 提优精练08-2023-2024学年九年级英语上学期完形填空与阅读理解提优精练(原卷版)
- DB4511T 0002-2023 瓶装液化石油气充装、配送安全管理规范
- 企业内部客供物料管理办法
- 妇科临床葡萄胎课件
- 三基三严练习题库与答案
- 传媒行业突发事件应急预案
- 债务抵租金协议书范文范本
- 小学英语时态练习大全(附答案)-小学英语时态专项训练及答案
- (高清版)JTGT 3360-01-2018 公路桥梁抗风设计规范
- 代持房屋协议书
- 国际品牌酒店管理合同谈判要点
评论
0/150
提交评论