




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市达标名校2025届高二上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列前项和为,且,,则此数列中绝对值最小的项为A.第5项 B.第6项C.第7项 D.第8项2.小王与小张二人参加某射击比赛预赛的五次测试成绩如下表所示,设小王与小张成绩的样本平均数分别为和,方差分别为和,则()第一次第二次第三次第四次第五次小王得分(环)910579小张得分(环)67557A. B.C. D.3.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴广交会的四个不同地方服务,不同的分配方案有()种A.· B.·C. D.4.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.5.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.6.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.7.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.8.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.9.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.202210.已知向量,则()A.5 B.6C.7 D.811.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.1212.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.14.如图是一个无盖的正方体盒子展开图,A,B,C,D是展开图上的四点,BD则在正方体盒子中,AD与平面ABC所成角的正弦值为___________.15.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)16.设直线的方向向量分别为,若,则实数m等于___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市为加强市民对新冠肺炎的知识了解,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),共5人,第2组[25,30),共35人,第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)求a的值;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,且该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有-名志愿者被抽中的概率.18.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.19.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程20.(12分)如图1是直角梯形,以为折痕将折起,使点C到达的位置,且平面与平面垂直,如图2(1)求异面直线与所成角的余弦值;(2)在棱上是否存在点P,使平面与平面的夹角为?若存在,则求三棱锥的体积,若不存在,则说明理由21.(12分)设数列的前项和为,,且满足,.(1)求数列的通项公式;(2)证明:对一切正整数,有.22.(10分)求函数在区间上的最大值和最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设等差数列的首项为,公差为,,则,又,则,说明数列为递减数列,前6项为正,第7项及后面的项为负,又,则,则在数列中绝对值最小的项为,选C.2、C【解析】根据图表数据可以看出小王和小张的平均成绩和成绩波动情况.【详解】解:从图表中可以看出小王每次的成绩均不低于小张,但是小王成绩波动比较大,故设小王与小张成绩的样本平均数分别为和,方差分别为和.可知故选:C3、B【解析】先按要求分为四组,再四个不同地方,四个组进行全排列.【详解】两个组各2人,两个组各1人,属于部分平均分组,要除以平均分组的组数的全排列,故分组方案有种,再将分得的4组,分配到四个不同地方服务,则不同的分配方案有种.故选:B4、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C5、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.6、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题7、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题8、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.9、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C10、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A11、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C12、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:14、##【解析】先复原正方体,再构造线面角后可求正弦值.【详解】复原后的正方体如图所示,设所在面的正方形的余下的一个顶点为,连接,则平面,故为AD与平面ABC所成角,而,故为AD与平面ABC所成角的正弦值为.故答案为:.15、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.16、2【解析】根据向量垂直与数量积的等价关系,,计算即可.【详解】因为,则其方向向量,,解得.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.04;(2).【解析】(1)根据频率的计算公式,结合概率之和为1,即可求得参数;(2)根据题意求得抽样比以及第三组和第四组各抽取的人数,再列举所有可能抽取的情况,找出满足题意的情况,利用古典概型的概率计算公式即可求得结果.【小问1详解】第一组频率为,第二组的频率为,则第一组与第二组的频率之和为,又,故.【小问2详解】第3组的人数为,第4组的人数为,第5组的人数为,因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志题者中抽收6名志愿者,每组抽取的人数分别为:第3组:;第4组:;第5组:.记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有:,,共有10种其中第3组的3名志愿者至少有一名志愿者被抽中的有:,共9种.所以第3组至少有一名志愿者被抽中的概率为.18、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.19、(1);(2)【解析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或所以直线的方程是或.20、(1)(2)存在,靠近点D的三等分点.【解析】(1)由题意建立空间直接坐标系,求得的坐标,由求解;(2)假设棱上存在点P,设,求得点p坐标,再求得平面PBE的一个法向量,由平面,得到为平面的一个法向量,然后由求解.【小问1详解】解:因为,所以四边形ABCE是平行四边形,又,所以四边形ABCE是菱形,,又平面与平面垂直,又平面与平面=EB,所以平面,建立如图所示空间直接坐标系:则,所以,则,所以异面直线与所成角的余弦值是;【小问2详解】假设棱上存在点P,使平面与平面的夹角为,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 27 我的伯父鲁迅先生教学设计-2024-2025学年语文六年级上册统编版
- 6《做个勇敢的孩子》教学设计-2023-2024学年心理健康二年级下册教科版
- 2024-2025学年高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系(4)教学教学设计 新人教A版必修4
- Module 1 Unit 1 教学设计 2024-2025学年外研版八年级英语上册
- 2023年浙江省中考科学一轮专题辅导教学设计:溶液
- 资金安全管理办法
- 10 唐雎不辱使命(教学设计)九年级语文下册同步备课系列(统编版)
- 6《一封信》教学设计-2024-2025学年二年级上册语文统编版
- 5七律·长征(教学设计)-2024-2025学年统编版语文六年级上册
- 2024学年九年级英语上册 Unit 6 Movies and Theater Lesson33 The Fisherman and the Goldfish(I) 教学设计(新版)冀教版
- 医院保安服务方案投标文件(技术方案)
- 保证食品安全的规章制度清单
- 游泳池经营方案
- 焊接接头表面质量检查记录
- 空调机房吸音墙顶面综合施工专题方案
- 红楼梦专题元妃省亲39课件
- 预防性健康检管理制度管理办法
- ISO50001-2018能源管理体系内审计划、记录及报告
- 初中人教版七年级上册音乐5.2甘美兰(22张)ppt课件
- 工程土石方挖运机械租赁合同
- 新版GMP批生产记录模板(2013年10月)
评论
0/150
提交评论