2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】_第1页
2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】_第2页
2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】_第3页
2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】_第4页
2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年重庆市璧山区青杠初级中学九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)要使代数式有意义,实数的取值范围是()A. B. C. D.2、(4分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85° B.75° C.95° D.105°3、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米1.501.601.651.701.751.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.654、(4分)已知一元二次方程,则它的一次项系数为()A. B. C. D.5、(4分)如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对6、(4分)下列说法中错误的是()A.四个角相等的四边形是矩形 B.四条边相等的四边形是正方形C.对角线相等的菱形是正方形 D.对角线垂直的矩形是正方形7、(4分)如图,中,是边的中点,平分于已知则的长为()A. B.C. D.8、(4分)一个正多边形的内角和为,则这个正多边形的每一个外角的度数是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.10、(4分)函数中,自变量________的取值范围是________.11、(4分)已知在正方形中,,则正方形的面积为__________.12、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.13、(4分)已知方程,如果设,那么原方程可以变形成关于的方程为__________.三、解答题(本大题共5个小题,共48分)14、(12分)(1)(2)15、(8分)用适当的方法解一元二次方程:x2+4x+3=1.16、(8分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.17、(10分)先化简,再求值,其中a=-218、(10分)化简或计算:(1)()2•(﹣)(2)÷﹣×B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.20、(4分)端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖_____元.21、(4分)分解因式:1﹣x2=.22、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.23、(4分)在一次函数y=(m-1)x+6中,y随x的增大而增大,则m的取值范围是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在正方形ABCD中,E、F是对角线BD上两点,将绕点A顺时针旋转后,得到,连接EM,AE,且使得.(1)求证:;(2)求证:.25、(10分)如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<1≤10)s.过点E作EF⊥BC于点F,连接DE,DE.(1)用含t的式子填空:BE=________

cm,CD=________

cm.(2)试说明,无论t为何值,四边形ADEF都是平行四边形;(3)当t为何值时,△DEF为直角三角形?请说明理由.26、(12分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据二次根式的双重非负性即可求得.【详解】代数式有意义,二次根号下被开方数≥0,故∴故选B.本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.2、A【解析】

解:∵△AOB绕点O顺时针旋转60°,得到△A′OB′,∴∠B′=25°,∠BOB′=60°,∵∠A′CO=∠B′+∠BOB′,∴∠A′CO=25°+60°=85°,故选A.3、A【解析】

1、回忆位中数和众数的概念;2、分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;3、根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.2,

所以中位数是1.2,

同一成绩运动员最多的是1.1,共有4人,

所以,众数是1.1.

因此,众数与中位数分别是1.1,1.2.

故选A.本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.4、D【解析】

根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,故选:D.此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).5、C【解析】

由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.【详解】∵四边形ABCD是等腰梯形,∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.故选C.本题考查等腰梯形的性质,全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.6、B【解析】

根据矩形和正方形的性质和判定进行分析即可.【详解】A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;

B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;

C、对角线相等的菱形是正方形,该说法正确,不符合题意;

D、对角线垂直的矩形是正方形,该说法正确,不符合题意.

故选B.考核知识点:正方形和矩形的判定.理解定理是关键.7、A【解析】

延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、A【解析】

根据多边形的内角和公式求出边数,从而求得每一个外角的度数.【详解】多边形的内角和为,即解得:∴该多边形为正八边形∴正八边形的每一个外角为:故选:A本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.二、填空题(本大题共5个小题,每小题4分,共20分)9、x>1【解析】

利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.【详解】解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,∴当y>0时,x﹣1>0,解得x>1,故答案为:x>1.本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.10、且【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.【详解】解:根据题意得:计算得出:x≥-2且x≠1.故答案是:x≥-2且x≠1.本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.11、【解析】

正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.【详解】如图,∵AC的长为4,∴正方形ABCD的面积为×42=1,故答案为:1.本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.12、1【解析】

根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【详解】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得

3x=20−2x.

解得x=1,

故答案为:1.本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.13、(或)【解析】

观察方程的两个分式具备的关系,如果设,则原方程另一个分式为可用换元法转化为关于y的分式方程.去分母即可.【详解】∵=∴把代入原方程得:,方程两边同乘以y整理得:.此题考查换元法解分式方程,解题关键在利用换元法转化即可.三、解答题(本大题共5个小题,共48分)14、(1);(2)【解析】

(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;(2)首先化简二次根式,然后先将括号中二次根式相减,然后再除即可得出答案.【详解】解:(1)原式(2)原式此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15、x2=-3,x2=-2【解析】

利用因式分解法解方程.【详解】解:(x+3)(x+2)=2,x+3=2或x+2=2,所以x2=-3,x2=-2.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.16、(1);(2);(3)或或.【解析】

(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.17、,原式=-5;【解析】

先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把的值代入求值.【详解】原式,当时,原式.这道求代数式值的题目,不应考虑把的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.18、(1)﹣;(1)1﹣1.【解析】

(1)先算乘方,再算乘法即可;(1)先算除法和乘法,再化简即可.【详解】(1)原式==﹣;(1)原式=﹣=﹣=1﹣1.本题考查了分式的混合运算,二次根式的混合运算,熟练掌握分式和二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.一、填空题(本大题共5个小题,每小题4分,共20分)19、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.20、2【解析】

设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.【详解】设平时每个粽子卖x元.根据题意得:54解得:x=2经检验x=2是分式方程的解故答案为2.本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.21、(1+x)(1﹣x).【解析】试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).22、1【解析】

试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=1.考点:菱形的性质.23、m>1【解析】

由一次函数的性质可得到关于m的不等式,可求得m的取值范围.【详解】解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,∴m-1>0,解得m>1,故答案为:m>1.本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)见解析.【解析】

(1)直接利用旋转的性质证明△AME≌△AFE(SAS),即可得出答案;(2)利用(1)中所证,再结合勾股定理即可得出答案.【详解】证明:(1)∵将绕点A顺时针旋转90°后,得到,,,,,,,,在△AME和中,,;(2)由(1)得:,在中,,又∵,.此题主要考查了旋转的性质、全等三角形的判定和性质以及勾股定理等知识,正确得出△AME≌△AFE是解题关键.25、(1)(1)t,10-t;(2)见解析;(3)满足条件的t的值为5s或s,理由见解析【解析】

(1)点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,由路程=时间×速度,得AD=t,CD=10-t,;点E从点B出发沿BA方向以

cm/s的速度向点A匀速运动,所以BE=t;(2)因为△ABC是等腰直角三角形,得∠B=45°,结合BE=t,得EF=t,

又因为∠EFB和∠C都是直角相等,

得AD∥EF,

根据一组对边平行且相等的四边形是平行四边形,证得四边形ADFE是平行四边形;(3)

①当∠DEF=90°时,因为DF平分对角,四边形EFCD是正方形,

这时AD=DE=CD

=5,求得t=5;②当∠EDF=90°时,

由DF∥AE,两直线平行,内错角相等,得∠AED=∠EDF=90°,结合∠A=45°,AD=

AE,据此列式求得t值即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论