2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题含解析_第1页
2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题含解析_第2页
2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题含解析_第3页
2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题含解析_第4页
2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省汉中市南郑区龙岗学校高一上数学期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,则a,b,c的大小关系是()A. B.C. D.2.已知是定义在上的奇函数,且,若对任意,都有成立,则的值为()A.2022 B.2020C.2018 D.03.已知,,则下列不等式正确的是()A. B.C. D.4.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R5.如图,在平面四边形中,,将其沿对角线对角折成四面体,使平面⊥平面,若四面体的顶点在同一球面上,则该求的体积为A. B.C. D.6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.7.已知α是第三象限的角,且,则()A. B.C. D.8.若两个非零向量,满足,则与的夹角为()A. B.C. D.9.已知集合,则中元素的个数为A.1 B.2C.3 D.410.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数=,若对任意的都有成立,则实数的取值范围是______12.若在幂函数的图象上,则______13.函数的最小值为______.14.直线与平行,则的值为_________.15.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.16.已知不等式ax2+bx+2>0的解集为{x|-1<x<2},则不等式2x2+bx+a<0的解为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围18.已知A,B,C是三角形三内角,向量,,且(1)求角A;(2)若,求19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.20.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边与单位圆交于点,(1)求的值;(2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;(3)若点与关于轴对称,求的值.21.在平面直角坐标系中,已知角的顶点都与坐标原点重合,始边都与x轴的非负半轴重合,角的终边与单位圆交于点,角的终边在第二象限,与单位圆交于点Q,扇形的面积为.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.2、D【解析】利用条件求出的周期,然后可得答案.【详解】因为是定义在上的奇函数,且,所以,所以,所以即的周期为4,所以故选:D3、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.4、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理5、A【解析】平面四边形ABCD中,AB=AD=CD=2,BD=2,BD⊥CD,将其沿对角线BD折成四面体A'﹣BCD,使平面A'BD⊥平面BCD.四面体A'﹣BCD顶点在同一个球面上,△BCD和△A'BC都是直角三角形,BC的中点就是球心,所以BC=2,球的半径为:;所以球的体积为:故答案选:A点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.6、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.7、B【解析】由已知求得,则由诱导公式可求.【详解】α是第三象限的角,且,,.故选:B.8、C【解析】根据数量积的运算律得到,即可得解;【详解】解:因为,所以,即,即,所以,即与的夹角为;故选:C9、A【解析】利用交集定义先求出A∩B,由此能求出A∩B中元素的个数【详解】∵集合∴A∩B={3},∴A∩B中元素的个数为1故选A【点睛】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用10、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:12、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题13、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.14、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.15、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键16、【解析】不等式的解集为{x|-1<x<2},可得-1,2是一元二次方程的两个实数根,且a<0,利用根与系数的关系可得a,b,即可得出【详解】解:∵不等式的解集为{x|-1<x<2},∴-1,2是一元二次方程的两个实数根,且a<0,解得解得a=-1,b=1.则不等式化为,解得.不等式的解集为.故答案为.【点睛】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递减;(3)【解析】(1)函数为奇函数,则,再用待定系数法即可求出;(2)作差法:任意的两个实数,证明出;(3)要使则试题解析:(1)所以(2)由(1)问可得在区间上是单调递减的证明:设任意的两个实数又,,在区间上是单调递减的;(3)由(2)知在区间上的最小值是要使则考点:1、待定系数法;2、函数的单调性;3、不等式恒成立问题.18、(1)(2)【解析】(1)用数量积的坐标运算表示出,有,再由两角差的正弦公式化为一个三角函数式,最终求得;(2)化简,可直接去分母,注意求得结果后检验分母是否为0(本题解法),也可先化简已知式为,再变形得,由可得结论试题解析:(1)∵,∴,即,,,∵,,∴,∴(2)由题知:,整理得,∴,∴,∴或,而使,舍去,∴,∴考点:数量积坐标运算,两角和与差的正弦公式、正切公式19、24【解析】由题意得:,所以时,.考点:函数及其应用.20、(1)(2)(3)【解析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;(2)依题意可得,再由(1),即可得解;(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计算可得;【小问1详解】解:因为角终边与单位圆交于点,且,由三角函数定义,得.因为,所以.因为点在第一象限,所以.【小问2详解】解:因为射线绕坐标原点按逆时针方向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论