版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教中学七年级下册数学期末学业水平卷及答案一、选择题1.下列图形中,与是同旁内角的是()A. B. C. D.2.下列车标,可看作图案的某一部分经过平移所形成的是()A. B. C. D.3.已知A(−1,2)为平面直角坐标系中一点,下列说法正确的是()A.点在第一象限 B.点的横坐标是C.点到轴的距离是 D.以上都不对4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有()A.0个 B.1个 C.2个. D.3个5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是()A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤6.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根7.如图,已知,点在上,连接,作平分交于点,,则的度数为().A. B.C. D.8.一只青蛙在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2021次跳到点()A.(6,45) B.(5,44) C.(4,45) D.(3,44)九、填空题9.的算术平方根是_______.十、填空题10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.十一、填空题11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__.十二、填空题12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___.十三、填空题13.如图,有一条直的宽纸带,按图折叠,则的度数等于______.十四、填空题14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么.十五、填空题15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__.十六、填空题16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________.十七、解答题17.计算:(1)(2)十八、解答题18.求下列各式中的值:(1);(2);(3).十九、解答题19.如图,已知∠AED=∠C,∠DEF=∠B,试说明∠EFG+∠BDG=180∘,请完成下列填空:∵∠AED=∠C(_________)∴ED∥BC(_________)∴∠DEF=∠EHC(___________)∵∠DEF=∠B(已知)∴_______(等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG+∠BDG=180∘(___________)二十、解答题20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′.(2)写出点A′、O′的坐标.二十一、解答题21.已知的立方根是,的算术平方根是3,是的整数部分.(1)求、、的值;(2)求的平方根.二十二、解答题22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)二十三、解答题23.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.(1)如图1,求证:;(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;二十四、解答题24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且(1)求的度数.(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使时,求的度数.二十五、解答题25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.【详解】解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意;B、点的横坐标是−1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C.【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.4.C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.【详解】解:①对顶角相等,原命题是真命题;②两直线平行,同位角相等,不是真命题;③两点之间,线段最短,原命题不是真命题;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题.故选:C.【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=﹣.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=,∠2=∠DCE2=,∴∠AE2C=+.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=﹣.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣﹣.综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.C【详解】解:由题意可知4的算术平方根是2,4的立方根是<2,8的算术平方根是,2<<3,8的立方根是2,故根据数轴可知,故选C7.A【分析】由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数.【详解】解:,,,平分交于点,,.故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质.8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).故选:D.【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.九、填空题9..【详解】试题分析:∵的平方为,∴的算术平方根为.故答案为.考点:算术平方根.解析:.【详解】试题分析:∵的平方为,∴的算术平方根为.故答案为.考点:算术平方根.十、填空题10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.十一、填空题11.17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,解析:17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,EC=OE,∴DE=OD+OE=BD+EC;∵△ADE的周长为12,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,∵BC=7,∴△ABC的周长为:AB+AC+BC=12+5=17.故答案为17.十二、填空题12.115°【分析】要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.【详解】解:∵AB∥CD解析:115°【分析】要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.【详解】解:∵AB∥CD,∠C=50°,∴∠C=∠AOC=50°,∵OE平分∠AOC,∴25°,∵OE⊥OF,∴∠EOF=90°,∴∠AOF=∠AOE+∠EOF=115°,故答案为:115°.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题13.75°【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【详解】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为解析:75°【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【详解】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.十四、填空题14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=∠CAE,∠2=∠ACF.所以∠1+∠2=∠CAE+∠ACF=(∠CAE+∠ACF)=×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果,那么,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.十五、填空题15.(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点解析:(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0).【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.十六、填空题16.(-506,-506)【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A解析:(-506,-506)【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),∵2021=505×4+1,∴A2021(-506,-506),故答案为:(-506,-506).【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.十七、解答题17.(1)3;(2)2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1解析:(1)3;(2)2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1)原式=-(2-4)÷6+3=++3=3;(2)原式==.故答案为:(1)3;(2).【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键.十八、解答题18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3=则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.十九、解答题19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG=180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG=180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC=∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C(已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC(两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC=∠B(等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG=180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.二十、解答题20.(1)见解析;(2)A′,O′【分析】(1)分别作出A,B,O的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A′,O′【分析】(1)分别作出A,B,O的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(2,1),O′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.二十一、解答题21.(1);(2)的平方根是.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)将a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】(解析:(1);(2)的平方根是.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)将a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】(1)∵的立方根是∴∴∴∵的算术平方根是3∴,,∵是的整数部分∴(2)∵,,∴即的平方根是【点睛】此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.二十二、解答题22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米.则,解得:,长为,宽为∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:如图,过点作,∴,∵,∴.∴.∵,∴,∴.(2)补全图形如图2、图3,猜想:或.证明:过点作.∴.∵,∴∴,∴.∵平分,∴.如图3,当点在上时,∵平分,∴,∵,∴,即.如图2,当点在上时,∵平分,∴.∴.即.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.二十四、解答题24.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC,BD分别评分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴与之间的数量关系保持不变;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.二十五、解答题25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度住宅小区室内设计规划合同
- 2024年城乡供水一体化工程合同
- 2024年学生违纪就读规范合同版B版
- 2024全面货物交易与物流服务合作合同一
- 2024商业买卖协议范例下载无偿提供版
- 2024常用工程作业人员劳动协议版B版
- 2024年定制版中介代理协议样本版B版
- 2024年度园林树苗销售协议模板版
- 2024年实木建筑安装协议范例版B版
- 2024年大型客机零部件购销合同
- 2024年社区工作者考试必背1000题题库【含答案】
- SYT 0452-2021 石油天然气金属管道焊接工艺评定-PDF解密
- 微生物的微生物生产和环境监测
- 工程量清单及招标控制价编制服务采购服务方案
- 历史文化街区保护修复项目建议书
- 大数据技术生涯发展报告
- 罢免物业申请书
- 建设项目安全设施“三同时”(直接使用版)通用课件
- 提高患者饮食知晓率的品管圈课件
- 项目任务分析方法
- 广东省深圳市两校2023-2024学年高二上学期期末联考数学试卷(含答案)
评论
0/150
提交评论