佳木斯市第一中学2025届数学高一上期末统考模拟试题含解析_第1页
佳木斯市第一中学2025届数学高一上期末统考模拟试题含解析_第2页
佳木斯市第一中学2025届数学高一上期末统考模拟试题含解析_第3页
佳木斯市第一中学2025届数学高一上期末统考模拟试题含解析_第4页
佳木斯市第一中学2025届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

佳木斯市第一中学2025届数学高一上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.2.四个变量y1,y2,y3,y4,随变量x变化的数据如下表:x124681012y116295581107133159y21982735656759055531447y3186421651210001728y42.0003.7105.4196.4197.1297.6798.129其中关于x近似呈指数增长的变量是()A. B.C. D.3.函数和都是减函数的区间是A. B.C. D.4.下列函数中,表示同一个函数的是A.与B.与C.与D.与5.函数的零点所在的大致区间是A. B.C. D.6.角的终边经过点,且,则()A. B.C. D.7.已知函数,把函数的图像向右平移个单位,得到函数的图像,若是在内的两根,则的值为()A. B.C. D.8.若函数是函数(且)的反函数,且,则()A. B.C. D.9.若,且为第二象限角,则()A. B.C. D.10.已知函数的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为B.函数的图象关于直线对称C.函数的图象关于点对称D.函数在区间上单调递减二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.12.在函数的图像上,有______个横、纵坐标均为整数的点13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.14.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__15.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.16.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.△ABC的顶点坐标分别为A(1,3),B(5,7),C(10,12),求BC边上的高所在的直线的方程18.已知,且向量在向量的方向上的投影为,求:(1)与的夹角;(2).19.某高校的入学面试中有3道难度相当的题目,李明答对每道题的概率都是0.6,若每位面试者都有三次机会,一旦答对抽到的题目,则面试通过,否则就一直抽题到第三次为止.用Y表示答对题目,用N表示没有答对的题目,假设对抽到的不同题目能否答对是独立的,那么:(1)在图的树状图中填写样本点,并写出样本空间;(2)求李明最终通过面试的概率.20.已知二次函数满足,且的最小值是求的解析式;若关于x的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围21.设函数.(1)若在区间上的最大值为,求的取值范围;(2)若在区间上有零点,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2、B【解析】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,【详解】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,符合指数函数的增长特点.故选:B3、A【解析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.4、D【解析】对于A,B,C三个选项中函数定义域不同,只有D中定义域和对应法则完全相同的函数,才是同一函数,即可得到所求结论【详解】对于A,的定义域为R,的定义域为,定义域不同,故不为同一函数;对于B,的定义域为,的定义域为,定义域不同,故不为同一函数;对于C,定义域为,的定义域为R,定义域不同,故不为同一函数;对于D,与定义域和对应法则完全相同,故选D.【点睛】本题考查同一函数的判断,注意运用只有定义域和对应法则完全相同的函数,才是同一函数,考查判断和运算能力,属于基础题5、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题6、A【解析】利用三角函数的定义可求得的值,再利用三角函数的定义可求得的值.【详解】由三角函数的定义可得,则,解得,因此,.故选:A.7、A【解析】把函数图象向右平移个单位,得到函数,化简得且周期为,因为是在内的两根,所以必有,根据得,令,则,,所以,故选A.8、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.9、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.10、B【解析】先依据图像求得函数的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知,即,所以,又,可得,又因为所以,所以,故A错误;当时,.故B正确;当时,,故C错误;当时,则,函数不单调递减.故D错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.55②.8【解析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;812、3【解析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.13、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14、(,+∞)【解析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、15、【解析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【详解】依题意知:函数为奇函数且周期为2,则,,即.【点睛】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用16、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】设所求直线方程的斜率为k.根据以,先求出高所在直线的斜率,进而利用点斜式即可求出;【详解】设所求直线方程的斜率为k.因为所求直线与直线BC垂直,所以所以垂线方程为即.【点睛】熟练掌握两条直线垂直与斜率的关系、点斜式是解题的关键18、(1);(2)【解析】(1)由题知,进而得出,即可求得.(2)根据数量积的定义即可得出答案.【详解】解:(1)由题意,,所以.又因为,所以.(2).【点睛】本题考查了向量的夹角、向量的数量积,考查学生对公式的熟练程度,属于基础题.19、(1)(2)【解析】(1)根据树状图表示出样本空间;(2)先计算李明未通过面试的概率,再由对立事件的计算公式求出通过面试的概率.【小问1详解】由题意,样本空间为.样本点的填写如图所示,【小问2详解】可知李明未通过面试的概率为,所以李明通过面试的概率为20、(1)(2)(3)【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是.(3)由题意知.假设存在实数满足条件,对任意都有成立,即,故有,由.当时,在上为增函数,,所以;当时,,.即,解得,所以.当时,即解得.所以.当时,,即,所以,综上所述,,所以当时,使得对任意都有成立.点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式);(2)不等式对任意的恒成立可以等价转化为恒成立.21、(1);(2)【解析】⑴根据函数图象可得在区间上的最大值必是和其中较大者,求解即可得到的取值范围;⑵设方程的两根是,,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论