2025届广西南宁市“4 N”高中联合体数学高二上期末教学质量检测试题含解析_第1页
2025届广西南宁市“4 N”高中联合体数学高二上期末教学质量检测试题含解析_第2页
2025届广西南宁市“4 N”高中联合体数学高二上期末教学质量检测试题含解析_第3页
2025届广西南宁市“4 N”高中联合体数学高二上期末教学质量检测试题含解析_第4页
2025届广西南宁市“4 N”高中联合体数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广西南宁市“4N”高中联合体数学高二上期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.2.,,,,设,则下列判断中正确的是()A. B.C. D.3.双曲线的渐近线方程为()A. B.C. D.4.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.5.已知函数,则的值为()A. B.C.0 D.16.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.7.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.8.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.39.已知为等差数列,且,,则()A. B.C. D.10.如图,四面体-,是底面△的重心,,则()A B.C. D.11.在平行六面体中,,,,则()A. B.5C. D.312.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,某海轮以的速度航行,若海轮在点测得海面上油井在南偏东,向北航行后到达点,测得油井在南偏东,海轮改为沿北偏东的航向再行驶到达点,则,间的距离是________14.以点为圆心,为半径的圆的标准方程是_____________.15.已知点,,其中,若线段的中点坐标为,则直线的方程为________16.已知函数定义域为,值域为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,短轴长为(1)求椭圆的标准方程;(2)已知,A,B分别为椭圆的左、右顶点,过点A作斜率为的直线交椭圆于另一点E,连接EP并延长交椭圆于另一点F,记直线BF的斜率为.若,求直线EF的方程18.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值19.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由20.(12分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程21.(12分)在数列中,,且成等比数列(1)证明数列是等差数列,并求的通项公式;(2)设数列满足,其前项和为,证明:22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C2、D【解析】通过凑配构造的方式,构造出新式子,且可以化简为整数,然后利用放缩思想得到S的范围.【详解】解:,,,,,;,.故选:D3、A【解析】直接求出,,进而求出渐近线方程.【详解】中,,,所以渐近线方程为,故.故选:A4、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.5、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B6、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A7、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C8、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.9、B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B10、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B11、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.12、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件先由正弦定理求出的长,得出,求出的长,由勾股定理可得答案.【详解】海轮向北航行后到达点,则由题意,在中,又则,由正弦定理可得:,即在中,,所以故答案为:14、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:15、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.16、3【解析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【点睛】本题考查了余弦函数图像与性质的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由离心率得关系,短轴求出,结合关系式解出,可得椭圆的标准方程;(2)设,,过EF的方程为,联立直线与椭圆方程得韦达定理,结合斜率定义和化简得,由在椭圆上代换得,联立韦达定理可求,进而得解;【小问1详解】由题意可得,,,又,解得所以椭圆的标准方程为;【小问2详解】由(1)得,,显然直线EF的斜率存在且不为0,设,,则,都不为和0设直线EF的方程为,由消去y得,显然,则,因为,所以,等式两边平方得①又因为,在椭圆上,所以,②将②代入①可得,即,所以,即,解得或(舍去,此时)所以直线EF的方程为18、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.19、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解当时,的标准方程为,代入,解得故的标准方程为(2)不能是线段的中点设交点,,当直线的斜率不存在时,直线与双曲线只有一个交点,不符合题意.当直线的斜率存在时,设直线方程为,联立方程组,整理得,则,由得,将代入判别式,所以满足题意的直线也不存在所以点不能为线段的中点20、(1)(2)或【解析】(1)由两条直线垂直可设直线的方程为,将点的坐标代入计算即可;(2)当直线过原点时,根据直线的点斜式方程即可得出结果;当直线不过原点时可设直线的方程为,将点的坐标代入计算即可.【小问1详解】解:因为直线与直线垂直所以,设直线的方程为,因为直线过点,所以,解得,所以直线的方程为【小问2详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即当直线不过原点时,设直线的方程为,把点代入方程得,所以直线的方程是综上,所求直线的方程为或21、(1)证明见解析;;(2)证明见解析【解析】(1)利用已知条件推出数列是等差数列,其公差为,首项为1,求出通项公式,结合由,,成等比数列,转化求解即可.(2)化简通项公式,利用裂项消项法,求解数列的和即可【详解】证明:(1)由,得,即,所以数列是等差数列,其公差为,首项为1,因此,,,由成等比数列,得,即,解得或(舍去),故(2)因为,所以因为,所以【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论