版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省株洲二中高二上数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定是()A. B.C. D.2.对数的创始人约翰·奈皮尔(JohnNapier,1550-1617)是苏格兰数学家.直到18世纪,瑞士数学家欧拉发现了指数与对数的互逆关系,人们才认识到指数与对数之间的天然关系对数发现前夕,随着科技的发展,天文学家做了很多的观察,需要进行很多计算,特别是大数的连乘,需要花费很长时间.基于这种需求,1594年,奈皮尔运用了独创的方法构造出对数方法.现在随着科学技术的需要,一些幂的值用数位表示,譬如,所以的数位为4.那么的数位是()(注)A.6 B.7C.606 D.6073.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.94.如图,是对某位同学一学期次体育测试成绩(单位:分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且次测试成绩的极差超过分B.该同学次测试成绩的众数是分C.该同学次测试成绩的中位数是分D.该同学次测试成绩与测试次数具有相关性,且呈正相关5.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.6.点,是椭圆的左焦点,是椭圆上任意一点,则的取值范围是()A. B.C. D.7.在数列中,,则()A.2 B.C. D.8.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.9.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定10.直线的倾斜角是()A. B.C. D.11.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关12.在中,,则边的长等于()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______14.在数列中,,,则___________.15.在空间直角坐标系中,已知,,,,则___________.16.直线与直线平行,则m的值是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设分别为椭圆的左右焦点,过的直线l与椭圆C相交于A,B两点,直线的倾斜角为60度,到直线l的距离为(1)求椭圆C的焦距;(2)如果,求椭圆C的方程18.(12分)已知正项等差数列满足,(1)求数列的通项公式;(2)设,求数列的前项和19.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?20.(12分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.21.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值22.(10分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C2、D【解析】根据已知条件,设,则,求出t的范围,即可判断其数位.【详解】设,则,则,则,,的数位是607.故选:D.3、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C4、C【解析】根据给定的散点图,逐一分析各个选项即可判断作答.【详解】对于A,由散点图知,8次测试成绩总体是依次增大,极差为,A正确;对于B,散点图中8个数据的众数是48,B正确;对于C,散点图中的8个数由小到大排列,最中间两个数都是48,则次测试成绩的中位数是分,C不正确;对于D,散点图中8个点落在某条斜向上的直线附近,则次测试成绩与测试次数具有相关性,且呈正相关,D正确.故选:C5、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.6、A【解析】由,当三点共线时,取得最值【详解】设是椭圆的右焦点,则又因为,,所以,则故选:A7、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D8、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质9、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A10、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.11、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.12、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:114、##.【解析】由递推关系取可求,再取求,取求.详解】由分别取,2,3可得,,,又,∴,,,故答案为:.15、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.16、【解析】利用直线的平行条件即得.详解】∵直线与直线平行,∴,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求得直线的方程,利用点到直线的距离列方程,由此求得,进而求得焦距.(2)联立直线的方程和椭圆方程,化简写出根与系数关系,结合来求得,从而求得椭圆的方程.【小问1详解】依题意,直线的方程为,到的距离为,所以焦距.【小问2详解】由,消去并化简得,设,则,,,,,所以,,,,,,,,,所以,所以椭圆的方程为.18、(1);(2).【解析】(1)设数首项为,公差为,由,,列出方程组,求得,,即可求出数列的通项公式;(2),利用列项相消求和法即可得出答案.【详解】(1)设数首项为,公差为,由题得.解得,,(负值舍去)所以;(2)由(1)得则.19、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.20、(1);(2).【解析】(1)将代入即可求解;(2)首先结合已知条件分别求出命题和的解,写出,然后利用充分不必要的特征即可求解.【详解】(1)由题意可知,,解得,故实数的取值范围为;(2)由,解得或,由,解得,故命题:或;命题:,从而:或,因为是的充分不必要条件,所以或或,从而,解得,故实数的取值范围为.21、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.22、(1),(2)【解析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度海洋工程开发合作合同
- 福山陵园环境美化提升方案
- 热力管网清淤施工组织方案
- 2024年度城市地下综合管廊建设项目合同
- 2024年度公寓工程保险合同
- 城市文化旅游推广合作协议
- 2024年度物业管理有限公司物业管理服务合同
- 2024年度版权许可合同内容概述
- 2024年度办公室租赁及物业管理合同
- 软件开发质量保证月方案
- 高中毕业生登记表(模板)-
- 《收心教育主题班会》PPT课件.ppt
- 建筑工程分部分项工程划分表(电力部分)
- DNA 甲基化ppt课件
- 当前电力物资采购产品质量风险问题及管理策略探讨
- 合作建房协议书【范本】(通用版)(精编版)
- 输液反应诊断及处理
- 2017苏教版四年级科学上册知识点归纳
- 基于PLC控制西门子S7200旋转式滤水器控制系统设计
- 有关护理纠纷的案例
- 沪教牛津版四年级上册英语全册教案(含单元知识点总结)
评论
0/150
提交评论