版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市天印高级中学高二上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读如图所示程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.322.已知的三个顶点是,,,则边上的高所在的直线方程为()A. B.C. D.3.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣14.已知数列的前n项和为,,,则()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.816.新型冠状病毒(2019-NCoV)因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名,为考察某种药物预防该疾病的效果,进行动物试验,得到如下列联表:患病未患病总计服用药104555未服药203050总计3075105下列说法正确的是()参考数据:,0.050.013.8416.635A.有95%的把握认为药物有效B.有95%的把握认为药物无效C.在犯错误的概率不超过0.05的前提下认为药物无效D.在犯错误的概率不超过0.01的前提下认为药物有效7.已知直线与圆相切,则的值是()A. B.C. D.8.直线与直线平行,则两直线间的距离为()A. B.C. D.9.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.10.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.11.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.12.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线的焦点作互相垂直的两条直线,分别交抛物线与A,C,B,D四点,则四边形ABCD面积的最小值为___________14.命题“任意,”为真命题,则实数a的取值范围是______.15.过点作圆的切线,则切线方程为______.16.已知函数,若过点存在三条直线与曲线相切,则的取值范围为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.18.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.19.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.20.(12分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小21.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围22.(10分)如图,四棱锥中,平面,∥,,,为上一点,平面(Ⅰ)求证:∥平面;(Ⅱ)若,求点D到平面EMC的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C2、B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.3、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C4、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D5、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.6、A【解析】根据列联表计算,对照临界值即可得出结论【详解】根据列联表,计算,由临界值表可知,有95%的把握认为药物有效,A正确故选:A7、D【解析】直线与圆相切,直接通过求解即可.【详解】因为直线与圆相切,所以圆心到直线的距离,所以,.故选:D8、B【解析】先根据直线平行求得,再根据公式可求平行线之间的距离.【详解】由两直线平行,得,故,当时,,,此时,故两直线平行时又之间的距离为,故选:B.9、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误10、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.11、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B12、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、512【解析】设出直线的方程与抛物线方程联立,结合抛物线的定义、一元二次方程根与系数的关系进行求解即可.【详解】抛物线焦点的坐标为,由题意可知:直线存在斜率且不为零,所以设直线的斜率为,所以直线的方程为,与抛物线的方程联立得:,设,所以,由抛物线的定义可知:,因为直线互相垂直,所以直线的斜率为,同理可得:,所以四边形ABCD面积为:,当且仅当时取等号,即当时取等号,故答案为:51214、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:15、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.16、【解析】设过M的切线切点为,求出切线方程,参变分离得,令,则原问题等价于y=g(x)与y=-m-2的图像有三个交点,根据导数研究g(x)的图像即可求出m的范围【详解】,设过点的直线与曲线相切于点,则,化简得,,令,则过点存在三条直线与曲线相切等价于y=g(x)与y=-m-2的图像有三个交点∵,故当x<0或x>1时,,g(x)单调递增;当0<x<1时,,g(x)单调递减,又,,∴g(x)如图,∴-2<-m-2<0,即故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出圆的半径长,结合圆心坐标可得出圆的标准方程;(2)求出圆心到直线的距离,利用勾股定理可求得.小问1详解】解:圆的半径为,因此,圆的标准方程为.【小问2详解】解:圆心到直线的距离为,因此,.18、(1)250.(2)50(件).【解析】(1)数据的平均值一定在回归直线上;(2)将x=10代入回归方程即可.【小问1详解】由表中数据可得,,,代入,解得.【小问2详解】由(1)得,故单价为10元时,.当单价为10元时销量为50件.19、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.20、(1)(2)【解析】(1)利用表面积公式直接计算得到答案.(2)连接和,,故即为异面直线与所成角,证明,根据长度关系得到答案.【小问1详解】【小问2详解】如图所示:连接和,,故即为异面直线与所成角,,,,故平面,平面,故,,故,直角中,,,,故异面直线与所成角的大小为.21、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨迹为椭圆且点,为椭圆的左、右焦点,即记,则于是:,由对勾函数的性质:当时,,且,故的取值范围为22、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)运用线面平行的判定定理证明;(Ⅱ)借助体积相等建立方程求解即可【详解】(Ⅰ)证明:取的中点,连接,因为,所以,又因为平面,所以,所以平面,因为平面,所以∥,面,平面,所以∥平面;(Ⅱ)因为平面,面,所以平面平面,平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 测距仪市场发展预测和趋势分析
- 2024年度公寓楼打胶服务合同
- 便携探照灯市场发展现状调查及供需格局分析预测报告
- 内置盒式录像机的便携式摄像机市场发展现状调查及供需格局分析预测报告
- 2024年度技术开发与合作定制合同
- 虚拟现实眼镜市场发展预测和趋势分析
- 2024年度别墅购销合同书:别墅质量保证与维修服务合同
- 2024年度ointAPI接口使用合同
- 2024年度消防安全设施维护合同
- 2024年度房地产公司与购房者预售合同
- 2024年全国动物畜类防疫、检疫、检验技能知识试题库(附含答案)
- 选修3-2(高中物理旧教材同步讲义)第4章 7 涡流、电磁阻尼和电磁驱动同步讲义
- 透析患者疑难病例讨论
- 麻醉管理-血气分析在手术中的应用
- 高中数学奥赛辅导教材(共十讲)
- 国开一体化平台04633《纳税实务》形考任务(1-4)试题及答案
- 小学班级管理试题及答案
- 服务器及软件维护服务项目人员培训方案
- 真人CS俱乐部经营专项方案
- 儿童言语共鸣障碍的评估与康复(儿童言语康复课件)
- 2024版人教版英语初一上单词表
评论
0/150
提交评论