版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉州市晋江四校高一上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值为()A.4 B.3C.2 D.12.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.3.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]4.在,,中,最大的数为()A.a B.bC.c D.d5.已知是两条直线,是两个平面,则下列命题中正确的是A. B.C. D.6.终边在y轴上的角的集合不能表示成A. B.C. D.7.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)8.设集合,3,,则正确的是A.3, B.3,C. D.9.下列所给出的函数中,是幂函数的是A. B.C. D.10.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是__________,值域是__________.12.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.13.如图,矩形的三个顶点分别在函数,,的图像上,且矩形的边分别平行于两坐标轴.若点的纵坐标为2,则点的坐标为______.14.已知集合,若,则________.15.若幂函数的图象过点,则______.16.函数的定义域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.18.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.19.已知函数f(x)=2sin(2x+)(x∈R)(1)求f(x)的最小正周期:(2)求不等式成立的x的取值集合.(3)求x∈的最大值和最小值.20.如图所示,在直三棱柱中,,,,,点是中点()求证:平面()求直线与平面所成角的正切值21.已知函数,.(1)求的最小正周期和单调区间;(2)求在闭区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.2、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案3、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.4、B【解析】逐一判断各数的范围,即找到最大的数.【详解】因为,所以;;;.故最大.故选:B.【点睛】本题考查了根据实数范围比较实数大小,属于基础题.5、D【解析】A不正确,因为n可能在平面内;B两条直线可以不平行;C当m在平面内时,n此时也可以在平面内.故选项不对D正确,垂直于同一条直线的两个平面是平行的故答案为D6、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.7、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A8、D【解析】根据集合的定义与运算法则,对选项中的结论判断正误即可【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【点睛】本题考查了集合的定义与运算问题,属于基础题9、B【解析】根据幂函数的定义,直接判定选项的正误,推出正确结论【详解】幂函数的定义规定;y=xa(a为常数)为幂函数,所以选项中A,C,D不正确;B正确;故选B【点睛】本题考查幂函数的定义,考查判断推理能力,基本知识掌握情况,是基础题10、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.12、【解析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:13、【解析】先利用已知求出的值,再求点D的坐标.【详解】由图像可知,点在函数的图像上,所以,即.因为点在函数的图像上,所以,.因为点在函数的图像上,所以.又因为,,所以点的坐标为.故答案为【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.14、0【解析】若两个集合相等,则两个集合中的元素完全相同.,又,故答案为0.点睛:利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值;(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.15、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.16、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据函数为奇函数求参数值,注意验证是否符合题设.(2)将问题转化为在上恒成立,根据解析式判断的区间单调性,即可求的范围.小问1详解】由题设,,∴,即,故,当时,,不成立,舍去;当时,,验证满足.综上:.【小问2详解】由,即,又为增函数,由(1)所得解析式知:上递增,∴在单调递增-故,故.18、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故19、(1)(2)(3)最大值为2,最小值-1【解析】(1)利用正弦函数的周期即可求得;(2)先求出的解析式,再根据正弦函数的图像性质求解不等式;(3)根据x∈,求得,再根据正弦函数的图像性质可得函数f(x)在的最大值和最小值.【小问1详解】,∴f(x)的最小正周期为;【小问2详解】∵∴∴∴不等式成立的的取值集合为【小问3详解】∵,∴,∴,-∴﹣1≤≤2∴当,即时,f(x)的最小值为﹣1;当,即时,f(x)的最大值为2.20、(1)见解析(2).【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾股定理求出DE,B1E,计算tan∠DB1E【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点,∴OD为△ABC1的中位线,∴OD∥AC1,又AC1⊄平面CDB1,OD⊂平面CDB1,∴AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,∴∠DB1E为直线DB1与平面BCC1B1所成的角∵D是AB的中点,∴DE,BE,∴B1E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务策划咨询合同
- 集装箱货物装卸服务合同
- 外墙乳胶漆销售合同
- 高质量翻译服务合同范例
- 物业服务合同协议书样本
- 绿化植物订购合同
- 高端定制钢琴购买协议
- 综合管理系统购销合同
- 全面服务代理合同
- 智能医疗辅助诊断系统
- SH/T 3065-2024 石油化工管式炉急弯弯管工程技术规范(正式版)
- 2024年《艺术概论》知识考试题库(附答案)
- GB/T 43878-2024旋挖钻机截齿
- 《架空输电线路直升机巡视技术导则》
- 摊位安全责任书
- 《纸质文物修复与保护》课件-03纸质文物病害类型
- 美育的知与行智慧树知到期末考试答案2024年
- 老年患者围术期ERAS护理
- 2024年合肥百姓公共服务云平台有限公司招聘笔试冲刺题(带答案解析)
- 沙门菌感染的人工智能与机器学习应用
- 电气工程及其自动化大学生职业规划
评论
0/150
提交评论