版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市顺义区高一上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线相交,且交点在第一象限,则直线的倾斜角的取值范围是A. B.C. D.2.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.设,,,则a,b,c的大小关系是()A. B.C. D.4.如图所示的四个几何体,其中判断正确的是A.(1)不棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥5.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.6.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.7.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或8.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限9.函数的零点个数为()A. B.C. D.10.关于三个数,,的大小,下面结论正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最大值为_______12.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.13.已知直线与圆C:相交于A,B两点,则|AB|=____________14.如果二次函数在区间上是增函数,则实数的取值范围为________15.用秦九韶算法计算多项式,当时的求值的过程中,的值为________.16.已知,若,则_______;若,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求.(2)若,求实数m的取值范围.18.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?19.已知函数(1)若,成立,求实数的取值范围;(2)证明:有且只有一个零点,且20.设函数,.(1)判断函数的单调性,并用定义证明;(2)若关于x的方程在上有解,求实数a的取值范围.21.已知,(1)若,求(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】联立方程得交点,由交点在第一象限知:解得,即是锐角,故,选C.2、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.3、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.4、D【解析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误;(2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误;(3)中上下两个圆面不平行,不符合圆台的结构特征,∴(3)不是圆台,故C错误;(4)符合棱锥的结构特征,∴(4)是棱锥,故D正确故选D考点:棱锥的结构特征5、A【解析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A6、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确7、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.8、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.9、B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.10、D【解析】引入中间变量0和2,即可得到答案;【详解】,,,,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:12、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题13、6【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以故答案为:614、【解析】函数对称轴为,则由题意可得,解出不等式即可.【详解】∵函数的对称轴为且在区间上是增函数,∴,即.【点睛】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.15、,【解析】利用“秦九韶算法”可知:即可求出.【详解】由“秦九韶算法”可知:,当求当时的值的过程中,,,.故答案为:【点睛】本题考查了“秦九韶算法”的应用,属于基础题.16、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用集合的交集运算即可求解;(2)由集合的基本运算得出集合的包含关系,进而求出实数m的取值范围.【小问1详解】解:时,;又;【小问2详解】解:由得所以解得:所以实数m的取值范围为:18、此商品的最佳售价应为元.【解析】设最佳售价为元,最大利润为元,当时,取得最大值,所以应定价为元19、(1)(2)证明见解析.【解析】(1)把已知条件转化成大于在上的最小值即可解决;(2)先求导函数,判断出函数的单调区间,图像走势,再判断函数零点,隐零点问题重在转化.【小问1详解】由得,则在上单调递增,在上最小值为若,成立,则必有由,得故实数的取值范围为【小问2详解】在上单调递增,且恒成立,最小正周期,在上最小值为由此可知在恒为正值,没有零点.下面看在上的零点情况.,,则即在单调递增,,故上有唯一零点.综上可知,在上有且只有一个零点.令,则,令,则即在上单调递减,故有20、(1)在上为增函数,证明见解析;(2)【解析】(1)任取且,作差,整理计算判断出正负即可;(2)将关于x的方程在上有解转化为在上有解,进一步转化为在上的值域问题,求出值域即可.【详解】解:(1)任取且,,因为,所以,,所以,所以,所以在上为增函数;(2)由题意,得在上有解,即在上有解.由(1)知在上为增函数,所以,所以a的取值范围是.【点睛】方法点睛:方程解的个数问题可转化为两个函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 售后服务员工作总结贴心维护客户关系解决问题
- 办公用品设计师工作总结
- 幼儿园教师个人工作总结锦集三篇
- 电力行业销售代表工作总结
- 2024年度高端摩托车租赁服务合作协议2篇
- 2024年智能化设备采购及培训服务协议版B版
- 教学资源的开发与利用计划
- 2024年度离婚协议书婚前债权债务处理与财产分割详细范本3篇
- 托班生活美食课程设计
- 2024年度云存储服务与网络安全保障协议3篇
- 2024年全国(保卫管理员安全及理论)知识考试题库与答案
- 计算机组成原理习题答案解析(蒋本珊)
- 清洁灌肠护理
- 2024年北京石景山初三九年级上学期期末数学试题和答案
- 2024-2025学年高中英语学业水平合格性考试模拟测试题三含解析
- 2024-2030年中国神经外科行业市场发展趋势与前景展望战略分析报告
- 抖音直播代播合同范本
- 投标突发事件应急预案
- EPC项目土建设计的重难点分析及解决措施
- 医院保安服务应急预案
- 2024年广东省揭阳市榕城区实验小学小升初衔接问卷数学试卷
评论
0/150
提交评论