版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市文绮中学高一数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间上的图象可能是()A. B.C. D.2.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.3.函数的单调递减区间为()A. B.C. D.4.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定5.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.最小正周期为,且在区间上单调递增的函数是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=7.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.8.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限9.下列四个图形中,不是以x为自变量的函数的图象是()A B.C. D.10.函数的部分图像是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).时刻(t)024681012水深(y)单位:米5.04.84.74.64.44.34.2时刻(t)141618202224水深(y)单位:米4.34.44.64.74.85.0用函数模型来近似地描述这些数据,则________.12.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.13.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=__________14.已知点是角终边上任一点,则__________15.已知幂函数的图象过点,且,则a的取值范围是______16.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的最小值和最大值.18.已知定义在上的奇函数.(1)求实数的值;(2)解关于的不等式19.计算:(1);(2)若,求的值20.已知函数在一个周期内的图象如图所示.(1)求函数的解析式;(2)若存在,使得关于的不等式成立,求实数的最小值.21.在年初的时候,国家政府工作报告明确提出,年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少,月至月的用煤量如下表所示:月份用煤量(千吨)(1)由于某些原因,中一个数据丢失,但根据至月份数据得出样本平均值是,求出丢失的数据;(2)请根据至月份的数据,求出关于的线性回归方程;(3)现在用(2)中得到的线性回归方程中得到的估计数据与月月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?(参考公式:线性回归方程,其中)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C2、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.3、A【解析】解不等式,,即可得答案.【详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.4、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A5、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.6、B【解析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可.【详解】对于选项,,最小正周期为,单调递增区间为,即,该函数在上单调递增,则选项错误;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项正确;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项错误;对于选项,,最小正周期为,在为单调递增,则选项错误;故选:.7、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.8、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B9、C【解析】根据函数中每一个自变量有且只有唯一函数值与之对应,结合函数图象判断符合函数定义的图象即可.【详解】由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C10、D【解析】根据函数的奇偶性和函数值在某个区间上的符号,对选项进行排除,由此得出正确选项.【详解】∵是奇函数,其图像关于原点对称,∴排除A,C项;当时,,∴排除B项.故选D.【点睛】本小题主要考查函数图像的识别,考查函数的单调性,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案.【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故.故答案为:或写成.12、【解析】根据维恩图可知,求,根据补集、交集运算即可.【详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:13、3【解析】a=0时不满足条件,∵直线2x+(1-a)y+2=0与直线ax-3y-2=0平行a≠0,∴解得a=314、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.15、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:16、【解析】利用求解向量间的夹角即可【详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为..【解析】(1)根据最小正周期的计算公式求解出的最小正周期;(2)先求解出的取值范围,然后根据正弦函数的单调性求解出在区间上的最值.【详解】(1)因为,所以;(2)因为,所以,当时,,此时,当时,,此时,故在区间上的最大值为,最小值为.18、(1)1;(2).【解析】(1)由奇函数的性质有,可求出的值,注意验证是否为奇函数.(2)根据函数的奇偶性、单调性可得,再结合对数函数的性质求解集.【小问1详解】因为是定义在上的奇函数,所以,解得,经检验是奇函数,即【小问2详解】由,得,又是定义在上的奇函数,所以,易知在上递增,所以,则,解得,所以原不等式的解集为19、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到,再根据指数对数恒等式得到,即可得解;【小问1详解】解:【小问2详解】解:,,,20、(1)(2)【解析】(1)结合图象,由最大最小值可得,由可得,由函数图象经过点可求,从而可得答案.(2)原不等式等价于存在,使得成立,即,令,利用函数单调性求解最小值即可得答案.【小问1详解】解:由图可知,设函数的最小正周期为,,,,,又由图可知函数的图象经过点,,,,【小问2详解】解:由(1)知原不等式等价于,即.又,∴原不等式等价于存在,使得成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学《办公室事务管理》2023-2024学年第一学期期末试卷
- 广东司法警官职业学院《自动变速器》2023-2024学年第一学期期末试卷
- 广东培正学院《海关报关实务》2023-2024学年第一学期期末试卷
- 七年级上册《5.1.1 从算式到方程》课件与作业
- 七年级上册《2.2.1 第1课时 有理数的乘法》课件与作业
- 广东茂名幼儿师范专科学校《发动机构造与原理》2023-2024学年第一学期期末试卷
- 广东理工职业学院《三维动画基础》2023-2024学年第一学期期末试卷
- 一年级数学计算题专项练习1000题汇编
- 物流工作总结范文10篇
- 【北京特级教师】2020-2021学年人教版高中地理必修二辅导讲义:工业区位选择和工业地域
- 绿化租摆服务投标方案(技术标)
- 整本书阅读《乡土中国》议题思辨:无讼之“讼”教学设计 中职语文高教版基础模块下册
- 医学教材 鼻出血的正确处理方法
- 水利水电移民安置验收资料目录、工作报告、验收报告、有关表格
- 2024年人教版生物八年级上册中考复习知识点纲要
- 机电样板实施施工方法及工艺要求
- 人音版音乐七年级下册 4.2.3凯皮拉的小火车 教案教案1000字
- 建设工程工程量清单计价规范有表格
- 2023版学前教育专业人才需求调研报告及人培方案(普招)
- 酒店客房部奖惩制度
- DB43-T 2927-2024 中医护理门诊建设与管理规范
评论
0/150
提交评论