专题19最值问题中的费马点模型(原卷版+解析)_第1页
专题19最值问题中的费马点模型(原卷版+解析)_第2页
专题19最值问题中的费马点模型(原卷版+解析)_第3页
专题19最值问题中的费马点模型(原卷版+解析)_第4页
专题19最值问题中的费马点模型(原卷版+解析)_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题19最值问题中的费马点模型【模型展示】特点费马点:三角形内的点到三个顶点距离之和最小的点如图,点M为锐角△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小【证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.结论三角形内的点到三个顶点距离之和最小的点【模型证明】解决方案如图,在锐角△ABC外侧作等边△ACB',连接BB’.求证:BB'过△ABC的费马点P,且BB'=PA+PB+PC.【证明】在BB'上取点P,使∠BPC=120°,连接AP,在PB'上截取PE=PC,连接CE.∵∠BPC=120°,∴∠EPC=60°,∴△PCE为等边三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为等边三角形,∴AC=B'C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB'=60°,∴∠PCA=∠ECB',∴△ACP≌△B'CE,∴∠APC=∠B'EC=120°,PA=EB',∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点,∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.如图,在△ABC中,以它的边AB,AC为边,分别在形外作等边三角形ABD,ACE,连接BE,CD.求证:BE=DC.【证明】由已知可得AB=AD,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.在△BAE和△DAC中,∴△BAE≌△DAC,∴BE=DC.【题型演练】一、单选题1.数学很多的知识都是以发明者的名字命名的,如韦达定理、杨辉三角、费马点等,你知道平面直角坐标系是哪一位法国的数学家创立的,并以他的名字命名的吗?()A.迪卡尔 B.欧几里得 C.欧拉 D.丢番图2.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=(

)A. B. C.6 D.3.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6 B. C. D.94.已知点P是内一点,且它到三角形的三个顶点距离之和最小,则P点叫的费马点(Fermatpoint).已经证明:在三个内角均小于的中,当时,P就是的费马点.若点P是腰长为的等腰直角三角形的费马点,则(

)A.6 B. C. D.9二、填空题5.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint),已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点,若P就是△ABC的费马点,若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=_____.6.若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120,则点P叫做△ABC的费马点.若点P为锐角△ABC的费马点,且∠ABC=60,PA=3,PC=4,则PB的值为___________.7.法国数学家费马提出:在△ABC内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA+PB+PC的值为费马距离.经研究发现:在锐角△ABC中,费马点P满足∠APB=∠BPC=∠CPA=120°,如图,点P为锐角△ABC的费马点,且PA=3,PC=4,∠ABC=60°,则费马距离为_____.8.已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足.(例如:等边三角形的费马点是其三条高的交点).若,P为的费马点,则_________;若,P为的费马点,则_________.三、解答题9.如图(1),P为ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角ABC的费马点,且∠ABC=60°.求证:ABP∽BCP;(3)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为ABC的费马点.10.背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.

11.若P为△ABC所在平面上一点,且,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为________;(2)如图,在锐角△ABC外侧作等边连结.求证:过△ABC的费马点P,且.12.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时,的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到处,连接,此时,这样就可以通过旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出______.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使,,求证:.(3)如图4,在直角三角形ABC中,,,,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出的值.13.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点是内的一点,将绕点逆时针旋转60°到,则可以构造出等边,得,,所以的值转化为的值,当,,,四点共线时,线段的长为所求的最小值,即点为的“费马点”.(1)【拓展应用】如图1,点是等边内的一点,连接,,,将绕点逆时针旋转60°得到.①若,则点与点之间的距离是______;②当,,时,求的大小;(2)如图2,点是内的一点,且,,,求的最小值.14.如图1,点M为锐角三角形内任意一点,连接.以为一边向外作等边三角形,将绕点B逆时针旋转得到,连接.(1)求证:;(2)若的值最小,则称点M为的费马点.若点M为的费马点,求此时的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.15.如图,在中,,在内部有一点P,连接、、.(加权费马点)求:(1)的最小值;(2)的最小值(3)的最小值;(4)的最小值(5)的最小值;(6)的最小值(7)的最小值;(8)的最小值16.阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙解答:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最短的点P的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,C距离之和最小的点称为ABC的费马-托里拆利点,也简称为费马点或托里拆利点.问题解决:(1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将BPC绕点B顺时针旋转60°得到BDE,连接PD,可得BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因PA+PB+PC=PA+PD+DE,由可知,PA+PB+PC的最小值与线段的长度相等;(2)如图2,在直角三角形ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接PA,PB,PC,若AB=2,求PA+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在ADE内部是否存在一点P,使得PA+PD+PE最小,若存在,请直接写出PA+PD+PE的最小值;若不存在,请说明理由.17.综合与实践材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易.它是一种以变化的、运动的观点来处理孤立的、离散问题的思想.材料二:皮埃尔·德·费马(如图),世纪法国律师和业余数学家,被誉为“业余数学家之王”.年勒·笛卡儿邀请费马思考关于三个顶点距离为定值的问题,费马经过思考并由此推出费马点的相关结论.定义:若一个三角形的最大内角小于则在其内部有一点所对三角形三边的张角均为此时该点叫做这个三角形的费马点.如图1,当三个内角均小于时,费马点在内部,此时的值最小.(1)如图2,等边三角形内有一点若点到顶点的距离分别为,求的度数.为了解决本题,小林利用“转化”思想,将绕顶点旋转到处,连接此时这样就可以通过旋转变换,将三条线段,转化到一个三角形中,从而求出;(2)如图3,在图1的基础上延长,在射线上取点,连接.使求证:;(3)如图4,在中,点为的费马点,连接,请直接写出的值.18.若点P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即PA+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:PA+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=4,∠M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.19.如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.20.(1)知识储备①如图1,已知点P为等边△ABC外接圆的弧BC上任意一点.求证:PB+PC=PA.②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.(2)知识迁移①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段____的长度即为△ABC的费马距离.②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).(3)知识应用①判断题(正确的打√,错误的打×):ⅰ.任意三角形的费马点有且只有一个(

);ⅱ.任意三角形的费马点一定在三角形的内部(

).②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的边长.

21.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=__________.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.专题19最值问题中的费马点模型【模型展示】特点费马点:三角形内的点到三个顶点距离之和最小的点如图,点M为锐角△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小【证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.结论三角形内的点到三个顶点距离之和最小的点【模型证明】解决方案如图,在锐角△ABC外侧作等边△ACB',连接BB’.求证:BB'过△ABC的费马点P,且BB'=PA+PB+PC.【证明】在BB'上取点P,使∠BPC=120°,连接AP,在PB'上截取PE=PC,连接CE.∵∠BPC=120°,∴∠EPC=60°,∴△PCE为等边三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为等边三角形,∴AC=B'C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB'=60°,∴∠PCA=∠ECB',∴△ACP≌△B'CE,∴∠APC=∠B'EC=120°,PA=EB',∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点,∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.如图,在△ABC中,以它的边AB,AC为边,分别在形外作等边三角形ABD,ACE,连接BE,CD.求证:BE=DC.【证明】由已知可得AB=AD,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.在△BAE和△DAC中,∴△BAE≌△DAC,∴BE=DC.【题型演练】一、单选题1.数学很多的知识都是以发明者的名字命名的,如韦达定理、杨辉三角、费马点等,你知道平面直角坐标系是哪一位法国的数学家创立的,并以他的名字命名的吗?()A.迪卡尔 B.欧几里得 C.欧拉 D.丢番图【答案】A【分析】根据实际选择对应科学家--迪卡尔.【详解】平面直角坐标系是法国的数学家迪卡尔创立的,并以他的名字命名.故选A【点睛】本题考核知识点:数学常识.解题关键点:了解数学家的成就.2.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=(

)A. B. C.6 D.【答案】B【详解】解:如图:等腰Rt△DEF中,DE=DF=,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=,解得:PE=PF==,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣=.故选B.点睛:此题主要考查了解直角三角形,正确画出图形进而求出PE的长是解题关键.3.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6 B. C. D.9【答案】B【分析】根据题意画出图形,根据勾股定理可得EF,由过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°就可以得到满足条件的点P,易得EM=DM=MF=,根据勾股定理列方程求出PM、PE、PF,继而求出PD的长即可求解.【详解】解:如图:等腰Rt△DEF中,DE=DF=6,∴,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠DPE=120°,点P就是马费点,∴EM=DM=MF=,设PM=x,PE=PF=2x,在Rt△EMP中,由勾股定理可得:,即,解得:,(负数舍去),即PM=,∴PE=PF=故DP=DM-PM=,则PD+PE+PF===.故选B.【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM的长是解题关键.4.已知点P是内一点,且它到三角形的三个顶点距离之和最小,则P点叫的费马点(Fermatpoint).已经证明:在三个内角均小于的中,当时,P就是的费马点.若点P是腰长为的等腰直角三角形的费马点,则(

)A.6 B. C. D.9【答案】B【分析】根据题意首先画出图形,过点作于点,在内部过、分别作,则,点就是费马点,求出,,的长即可解决问题.【详解】解:如图:过点作于点,在内部过、分别作,则,点就是费马点,在等腰中,,,,,∵∠PEM=30°,∠PME=90°,∴EP=2PM,则,解得:,则,故,同法可得,则.故选:.【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出的长是解题关键.二、填空题5.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint),已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点,若P就是△ABC的费马点,若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=_____.【答案】.【详解】如图:等腰Rt△DEF中,DE=DF=,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=,解得:PE=PF==,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣=.故答案为.6.若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120,则点P叫做△ABC的费马点.若点P为锐角△ABC的费马点,且∠ABC=60,PA=3,PC=4,则PB的值为___________.【答案】【详解】如图,根据三角形的内角和定理可得∠PAB+∠PBA=180°-∠APB=60°,再由∠PBC+∠PBA=∠ABC=60°,即可得∠PAB=∠PBC,又因∠APB=∠BPC=120°,即可判定△ABP∽△BCP,根据相似三角形的性质可得,即,再由PA=3,PC=4,即可求得PB=.7.法国数学家费马提出:在△ABC内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA+PB+PC的值为费马距离.经研究发现:在锐角△ABC中,费马点P满足∠APB=∠BPC=∠CPA=120°,如图,点P为锐角△ABC的费马点,且PA=3,PC=4,∠ABC=60°,则费马距离为_____.【答案】7+2【分析】根据相似三角形的判定和性质,即可求解.【详解】解:如图:∵∠APB=∠BPC=∠CPA=120,∠ABC=60°,∴∠1+∠3=60°,∠1+∠2=60°,∠2+∠4=60°,∴∠1=∠4,∠2=∠3,∴△BPC∽△APB∴即PB2=12∴∴故答案为:【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是利用相似三角形的判定和性质.8.已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足.(例如:等边三角形的费马点是其三条高的交点).若,P为的费马点,则_________;若,P为的费马点,则_________.【答案】

5

【分析】①作出图形,过分别作,勾股定理解直角三角形即可②作出图形,将绕点逆时针旋转60,P为的费马点则四点共线,即,再用勾股定理求得即可【详解】①如图,过作,垂足为,过分别作,则,P为的费马点5②如图:.将绕点逆时针旋转60由旋转可得:是等边三角形,P为的费马点即四点共线时候,=故答案为:①5,②【点睛】本题考查了勾股定理,旋转的性质,锐角三角函数,等腰三角形性质,作出旋转的图形是解题的关键.本题旋转也可,但必须绕顶点旋转.三、解答题9.如图(1),P为ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角ABC的费马点,且∠ABC=60°.求证:ABP∽BCP;(3)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为ABC的费马点.【答案】(1)是;(2)见解析;(3)①60°,②见解析【分析】(1)由等边三角形的性质证明可得同法可得:从而可得结论;(2)由为锐角ABC的费马点,且∠ABC=60°,证明∠PAB=∠PBC,∠APB=∠BPC=120°,从而可得△ABP∽△BCP;(3)①如图2所示:由△ABE与△ACD都为等边三角形,证明△ACE≌△ADB(SAS),利用全等三角形的性质可得∠CPD=∠6=∠5=60°;②先证明△ADF∽△PCF,可得再证明△AFP∽△DFC.可得∠APC=∠CPD+∠APF=120°,再证明∠BPC=120°,从而可得结论.【详解】解:(1)如图1所示:∵AB=BC,BM是AC的中线,∴MB平分∠ABC.同理:AN平分∠BAC,PC平分∠BCA.∵△ABC为等边三角形,∴∠ABP=30°,∠BAP=30°.∴∠APB=120°.同理:∠APC=120°,∠BPC=120°.∴P是△ABC的费马点.故答案为:是.(2)为锐角ABC的费马点,且∠ABC=60°.∠APB=∠BPC=120°,∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,∴△ABP∽△BCP.(3)如图2所示:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,∴△ACE≌△ADB(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:△ADF∽△PCF,∵∠AFP=∠CFD,∴△AFP∽△DFC.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.【点睛】本题考查的是等边三角形的性质,三角形全等的判定与性质,三角形相似的判定与性质,确定图中隐含的全等三角形与相似三角形是解题的关键.10.背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.

【答案】(1)150°;

(2)E′F2=CE′2+FC2,理由见解析;(3).【详解】试题分析:(1)(2)首先把△ACE绕点A顺时针旋转90°,得到△ACE′.连接E′F,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,然后再证明△EAF≌△E′AF可得E′F=EF,,再利用勾股定理可得结论;(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据已知证明C、O、A′、O′四点共线,在Rt△A′BC中,利用勾股定理求得A′C的长,根据新定义即可得OA+OB+OC=.试题解析:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴将△ABP绕顶点A逆时针旋转60°得到△ACP′,如图,连结PP′,∴AP=AP′=3,∠PAP′=60°,P′C=PB=4,∠APB=∠AP′C,∴△APP′为等边三角形,∴∠PP′A=60°,PP′=AP=3,在△PP′C中,∵PP′=3,P′C=4,PC=5,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,∠PP′C=90°,∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°,∴∠APB=150°,故答案为150°;

(2)E′F2=CE′2+FC2,理由如下:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2;

(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC==,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【点睛】本题考查了旋转、全等三角形的判定与性质等,是一道综合性题目,正确的作出辅助线是解题的关键.11.若P为△ABC所在平面上一点,且,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为________;(2)如图,在锐角△ABC外侧作等边连结.求证:过△ABC的费马点P,且.【答案】(1)(2)证明见解析【分析】(1)由题意可得△ABP∽△BCP,所以,即PB=2;(2)在上取点P,使∠BPC=120°,连接AP,再在上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,,而为正三角形,由此也可以得到,,现在根据已知的条件可以证明,然后利用全等三角形的性质即可证明题目的结论.(1)∵∠PAB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴,∴,∴,∴PB=;(2)证明:在BB'上取点P,使∠BPC=120°.连接AP,再在PB'上截取PE=PC,连接CE.∠BPC=120°,∴∠EPC=60°,∴△PCE为正三角形,∴PC=CE,∠PCE=60°,.∵为正三角形,∴,,∴,∴,∴,∴,∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点.∴过△ABC的费马点P,且.【点睛】此题考查了相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形与等边三角形的性质及三角形内角和为180°等知识;此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.12.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时,的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到处,连接,此时,这样就可以通过旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出______.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使,,求证:.(3)如图4,在直角三角形ABC中,,,,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出的值.【答案】(1)150°(2)见解析(3)【分析】(1)由全等三角形的性质得到AP′=AP=3、CP′=BP=4,∠AP′C=∠APB,再根据旋转性质,证明△APP′为等边三角形,△PP′C为直角三角形,最后由∠APB=∠AP′C=∠AP′P+∠PP′C解答;(2)由费马点的性质得到,,再证明(ASA),由全等三角形对应边相等的性质解得,最后根据线段的和差解答;(3)将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,由勾股定理解得,由旋转的性质,可证明△BPP′是等边三角形,再证明C、P、A′、P′四点共线,最后由勾股定理解答.(1)解:∵,∴AP′=AP=3、CP′=BP=4,∠AP′C=∠APB,由题意知旋转角∠PAP′=60°,∴△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,由旋转的性质可得:AP′=AP=PP′=3,CP′=4,PC=5,∵32+42=52∴△PP′C为直角三角形,且∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故答案为:150°;(2)证明:∵点P为△ABC的费马点,∴,∴,又∵,∴APD为等边三角形∴,,∴,∴,在△APC和△ADE中,∴(ASA);∴,∵,∴BE=PA+PB+PC;(3)解:如图,将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴,把△APB绕点B顺时针方向旋转60°得到△A′P′B,∴∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△APB绕点B顺时针方向旋转60°,得到△A′P′B,∴A′B=AB=2,BP=BP′,A′P′=AP,∴△BPP′是等边三角形,∴BP=PP′,∠BPP′=∠BP′P=60°,∵∠APC=∠CPB=∠BPA=120°,∴∠CPB+∠BPP′=∠BP′A′+∠BP′P=120°+60°=180°,∴C、P、A′、P′四点共线,在Rt△A′BC中,,∴PA+PB+PC=A′P′+PP′+PC=A′C=.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.13.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点是内的一点,将绕点逆时针旋转60°到,则可以构造出等边,得,,所以的值转化为的值,当,,,四点共线时,线段的长为所求的最小值,即点为的“费马点”.(1)【拓展应用】如图1,点是等边内的一点,连接,,,将绕点逆时针旋转60°得到.①若,则点与点之间的距离是______;②当,,时,求的大小;(2)如图2,点是内的一点,且,,,求的最小值.【答案】(1)①3;②150°;(2)【分析】(1)①根据旋转的性质即可求出的值;②先证△ABP≌,利用全等的性子求出对应的边长,通过勾股定理的逆定理得到,即可求出的大小;(2)将△APC绕C点顺时针旋转60°得到,先求出,然后证明为等边三角形,当B、P、、四点共线时,和最小,用勾股定理求出的值即可.(1)①如图,将绕A逆时针旋转60°,则,,∴为等边三角形,;②∵△ABC为等边三角形,∴AB=AC,∠BAP+∠PAC=60°,又∵是等边三角形,∴∠PAC+=60°,∴∠BAP=,在△ABP与中,,∴△ABP≌(SAS),∴∴,,,又∵旋转,∴;(2)如图,将△APC绕C点顺时针旋转60°得到,则,在中,,,,又∵,,,过作⊥BC交BC的延长线于点D,则,,(30°所对的直角边等于斜边的一半),,,为等边三角形,当B、P、、四点共线时,和最小,在中,,,∴的最小值为.【点睛】本题考查了旋转变换,全等三角形的判定和性质,解题的关键在于能够添加辅助线构造全等三角形解决问题.14.如图1,点M为锐角三角形内任意一点,连接.以为一边向外作等边三角形,将绕点B逆时针旋转得到,连接.(1)求证:;(2)若的值最小,则称点M为的费马点.若点M为的费马点,求此时的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.【答案】(1)见解析;(2):;;(3)见解析【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB(2)连接MN,由(1)的结论证明ΔBMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、ΔCMA的度数;(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上,因此线段EC和BF的交点即为△ABC的费马点.【详解】解:(1)证明:∵为等边三角形,∴.而,∴.在与中,∴.(2)连接.由(1)知,.∵,∴为等边三角形.∴.∴.∴当E、N、M、C四点共线时,的值最小.此时,:;.(3)如图2,分别以的,为一边向外作等边和等边,连接,相交于M,则点M即为的费马点,由(2)知,的费马点在线段上,同理也在线段上.因此线段与的交点即为的费马点.(方法不唯一,正确即可)【点睛】本题考查了等边三角形的性质,三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.15.如图,在中,,在内部有一点P,连接、、.(加权费马点)求:(1)的最小值;(2)的最小值(3)的最小值;(4)的最小值(5)的最小值;(6)的最小值(7)的最小值;(8)的最小值【答案】(1);(2);(3);(4);(5);(6)26;(7);(8)【分析】(1)将绕点B顺时针旋转得到,则,,,可以推出为等边三角形,得到,则,即可得到A、P、、四点共线时,最小,最小值为,然后证明,由此利用勾股定理求解即可;(2)将绕点C逆时针旋转得到,则可证明,从而得到,则当A、P、、四点共线时最小,最小值为,过点A再作的垂线,垂足为E,利用勾股定理求出,,由此即可得到答案;(3)将绕点C逆时针旋转得到,则可证明,则,故当A、P、、四点共线时最小,最小值为,过点A再作的垂线,垂足为E,利用勾股定理求出,,由此即可得到答案;(4)将绕点C顺时针旋转,得到,再将以点C为位似中心放大2倍,得到,连接,先证明,则可以得到,故当,,,共线时最小,最小为,然后证明,即可利用勾股定理求解;(5)将绕点C顺时针旋转,得到,再将以点C为位似中心缩小2倍,得到,同(4)原理可证得当,,,共线时最小,最小为,然后证明,由此求解即可;(6)由可由(5)得:的最小值为26;(7)由可由(4)得的最小值为;(8)将绕点C顺时针旋转,得到,再将以点C为位似中心缩小倍,得到,同理可以证得当A、P、、,共线时的值最小.在中,,,过点作交BC延长线于E,然后求出,的长,由此即可求解.【详解】解:(1)如图3-2,将绕点B顺时针旋转得到,∴,,,∴为等边三角形,∴,∴,∴A、P、、四点共线时,最小,最小值为同理可证为等边三角形,∴,,∴,∴;∴的最小值为;(2)如图3-4,将绕点C逆时针旋转得到,∴,,,,,∴,∴,∴当A、P、、四点共线时,最小,最小值为∵∠ACB=30°,∴∴,过点A再作的垂线,垂足为E,∴∠AEC=90°,∠ACE=60°,∴∠CAE=30°,∴∴,,∴,∴的最小值为;(3)如图3-6,将绕点C逆时针旋转得到,∴,,,,,∴,过点C作于E,∴,,∴,∴,∴,∴当A、P、、四点共线时,最小,最小值为∵∠ACB=30°,∴∴,过点A再作的垂线,垂足为E,∴∠AEC=90°,∠ACE=3°,∴∴,∴∴,∴的最小值为;(4)如图3-8,将绕点C顺时针旋转,得到,再将以点C为位似中心放大2倍,得到,连接由旋转的性质得,,,,∴,,,是等边三角形,∴,,∴,∴,∴,∴,∴当,,,共线时最小,最小为,∵,∴,∴的最小值为;(5)如图3-10,将绕点C顺时针旋转,得到,再将以点C为位似中心缩小2倍,得到,同(4)原理可证得当,,,共线时最小,最小为,∵,在中,,,最小为;(6)∵∴由(5)得:的最小值为26;(7)∵∴由(4)得的最小值为;(8)如图3-12,将绕点C顺时针旋转,得到,再将以点C为位似中心缩小倍,得到,同理可以证得当A、P、、,共线时的值最小.在中,,,过点作交BC延长线于E,∴,∴,∴,∴,,∴,的最小值为.【点睛】本题主要考查了旋转的性质,勾股定理,位似,含30度角的直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质与判定等等,解题的关键在于能够作出辅助线,找到P点在什么位置时,线段的和最小.16.阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙解答:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最短的点P的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,C距离之和最小的点称为ABC的费马-托里拆利点,也简称为费马点或托里拆利点.问题解决:(1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将BPC绕点B顺时针旋转60°得到BDE,连接PD,可得BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因PA+PB+PC=PA+PD+DE,由可知,PA+PB+PC的最小值与线段的长度相等;(2)如图2,在直角三角形ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接PA,PB,PC,若AB=2,求PA+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在ADE内部是否存在一点P,使得PA+PD+PE最小,若存在,请直接写出PA+PD+PE的最小值;若不存在,请说明理由.【答案】(1)两点之间,线段最短;AE;(2)2;(3)存在,2-2【分析】(1)连接AE,由两点之间线段最短即可求解;(2)在Rt△ABC中先求出AC,将△BPC绕点C顺时针旋转60°得到△CDE,连接PD、AE,由两点之间线段最短可知,PA+PB+PC的最小值与线段AE的长度相等,根据勾股定理即可求解;(3)在△ADE内部取一点P,连接PA、PD、PE,把△PAD饶点D顺时针旋转60°得到△FGD,根据旋转的性质和两点之间线段最短可知,PA+PD+PE的最小值与线段GE的长度相等,再根据圆的特点、菱形与勾股定理即可求出GE,故可求解.【详解】(1)连接AE,如图,由两点之间线段最短可知,PA+PB+PC的最小值为线段AE的长故答案为:两点之间线段最短;AE;(2)∵在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=2∴BC=2AB=4由勾股定理可得AC=如图2,将△BPC绕点C顺时针旋转60°得到△CDE,连接PD、AE,可得△CPD为等边三角形,∠BCE=60°∴PD=PC由旋转可得DE=PB,CE=BC=4∴PA+PB+PC=PA+DE+PD由两点之间线段最短可知,PA+PB+PC的最小值与线段AE的长度相等∵∠ACE=∠ACB+∠BCE=30°+60°=90°∴在Rt△ACE中,AE=即PA+PB+PC的最小值为2;(3)存在在ADE内部是否存在一点P,使得PA+PD+PE最小,如图3,在△ADE内部取一点P,连接PA、PD、PE,把△PAD饶点D顺时针旋转60°得到△FGD,连接PF、GE、AG,可得△PDF、△ADG均为等边三角形∴PD=PF由旋转可得PA=GF∴PA+PD+PE=GF+PF+PE,两点之间线段最短可知,PA+PD+PE的最小值与线段GE的长度相等∵∠BEC=90°∴点E在以BC为直径的O上,如图3则OB=OC==2如图3,连接OG交O于点H,连接CG交AD于点K,连接AC,则当点E与点H重合时,GE取最小值,即PA+PD+PE的最小值为线段GH的长∵菱形ABCD的边长为4,∠ABC=60°∴AB=BC=CD=AD=4∴△ABC、△ACD均为等边三角形∴AC=CD=AD=DG=AG=4,∠ACB=∠ACD=60°∴四边形ACDG是菱形,∠ACG=∠ACD=30°∴CG、AD互相垂直平分∴DK=AD=2∴根据勾股定理得CK=∴CG=2CK=∵∠OCG=∠ACB+∠ACG=60°+30°=90°∴在Rt△OCG中,OG=∵OH=OC=2∴GH=OG-OH=2-2即PA+PD+PE的最小值为2-2.【点睛】此题主要考查四边形与圆综合的最短距离,解题的关键是熟知旋转的性质、圆周角定理及两点之间的距离特点.17.综合与实践材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易.它是一种以变化的、运动的观点来处理孤立的、离散问题的思想.材料二:皮埃尔·德·费马(如图),世纪法国律师和业余数学家,被誉为“业余数学家之王”.年勒·笛卡儿邀请费马思考关于三个顶点距离为定值的问题,费马经过思考并由此推出费马点的相关结论.定义:若一个三角形的最大内角小于则在其内部有一点所对三角形三边的张角均为此时该点叫做这个三角形的费马点.如图1,当三个内角均小于时,费马点在内部,此时的值最小.(1)如图2,等边三角形内有一点若点到顶点的距离分别为,求的度数.为了解决本题,小林利用“转化”思想,将绕顶点旋转到处,连接此时这样就可以通过旋转变换,将三条线段,转化到一个三角形中,从而求出;(2)如图3,在图1的基础上延长,在射线上取点,连接.使求证:;(3)如图4,在中,点为的费马点,连接,请直接写出的值.【答案】(1);(2)见解析;(3).【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)根据题意,先证明△APD是等边三角形,再证明,得到,然后即可得到结论成立.(3)将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BPP′是等边三角形,根据等边三角形的三条边都相等可得BP=PP′,等边三角形三个角都是60°求出∠BPP′=∠BP′P=60°,然后求出C、P、A′、P′四点共线,再利用勾股定理列式求出A′C,从而得到PA+PB+PC=A′C.【详解】解:∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PAP′=60°,∴△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,易证△PP′C为直角三角形,且∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故答案为:;证明:点为的费马点,又为等边三角形在和中,,;解:如图,将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC=,∵△APB绕点B顺时针方向旋转60°,∴△A′P′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△APB绕点B顺时针方向旋转60°,得到△A′P′B,∴A′B=AB=2,BP=BP′,A′P′=AP,∴△BPP′是等边三角形,∴BP=PP′,∠BPP′=∠BP′P=60°,∵∠APC=∠CPB=∠BPA=120°,∴∠COP+∠BPP′=∠BP′A′+∠BP′P=120°+60°=180°,∴C、P、A′、P′四点共线,在Rt△A′BC中,A′C=,∴PA+PB+PC=A′P′+PP′+PC=A′C=.【点睛】本题考查了三角形综合题,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形解决问题,属于中考压轴题.18.若点P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即PA+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:PA+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=4,∠M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.【答案】(1)①证详见解析;②详见解析;(2).【分析】(1)①如图1﹣1中,作AM⊥CD于M,AN⊥BE于N设AB交CD于O.证明△ADC≌△ABE(SAS)即可解决问题.②在线段PDA上取一点T,使得PA=PT,连接AT.证明△DAT≌△BAP(SAS),推出PD=PA+PB即可解决问题.(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【详解】(1)①如图1﹣1中,作AM⊥CD于M,AN⊥BE于N设AB交CD于O.∵△ADB,△ACE都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠CAE=60°,∴∠DAB=∠BAE,∴△ADC≌△ABE(SAS),∴CD=BE,S△DAC=S△ABE,∠ADC=∠ABE,∵AM⊥CD,AN⊥BE,∴•CD•AM=•BE•AN,∴AM=AN,∴∠APM=∠APN,∵∠AOD=∠POB,∴∠OPB=∠DAO=60°,∴∠APN=∠APM=60°,∴∠APC=∠BPC=∠APC=120°,∴点P是就是△ABC费马点.②在线段PDA上取一点T,使得PA=PT,连接AT.∵∠APT=60°,PT=PA,∴△APT是等边三角形,∴∠PAT=60°,AT=AP,∵∠DAB=∠TAP=60°,∴∠DAT=∠BAP,∵AD=AB,∴△DAT≌△BAP(SAS),∴PB=DT,∴PD=DT+PT=PA+PB,∴PA+PB+PC=PD+PC=CD=BE.(2)如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中,,∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=3∴MF=DF=,∴NF=MN+MF=4=,∴ND===,∴MO+NO+GO最小值为,故答案为,【点睛】本题属于三角形综合题,考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.19.如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.【答案】(1)见解析;(2)∠BMC=120°;∠AMB=120°;∠AMC=120°;(3)线段EC与BF的交点即为△ABC的费马点.【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB;(2)连接MN,由(1)的结论证明△BMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、∠CMA的度数;(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上,因此线段EC和BF的交点即为△ABC的费马点.【详解】(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.故答案为(1)见解析;(2)∠BMC=120°;∠AMB=120°;∠AMC=120°;(3)线段EC与BF的交点即为△ABC的费马点.【点睛】本题考查了等边三角形的性质,全等三角形的决定与性质.20.(1)知识储备①如图1,已知点P为等边△ABC外接圆的弧BC上任意一点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论