版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年山东德州经开区抬头寺中学数学九上开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为()米.(参考数据:,)A.350 B.250 C.200 D.1502、(4分)如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值()A.不变 B.扩大为原来的3倍C.扩大为原来的6倍 D.扩大为原来的9倍3、(4分)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是()A.30° B.15° C.18° D.20°4、(4分)如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于()A.4 B. C. D.55、(4分)已知△ABC的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c.①c2-a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2,c=.上述四个条件中,能判定△ABC为直角三角形的有()A.1个 B.2个C.3个 D.4个6、(4分)用配方法解方程x2﹣6x+3=0,下列变形正确的是()A.(x﹣3)2=6 B.(x﹣3)2=3 C.(x﹣3)2=0 D.(x﹣3)2=17、(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.8、(4分)甲安装队为A小区安装台空调,乙安装队为B小区安装台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台,设乙队每天安装台,根据题意,下面所列方程中正确的是A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若在实数范围内有意义,则x的取值范围是______.10、(4分)已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.11、(4分)在等腰三角形ABC中,AB=AC,∠B=30°,BC=cm,P是BC上任意一点,过P作PD//AB,PE//AC,则PE+PD的值为__________________.12、(4分)如图,在▱ABCD中,,在边AD上取点E,使,则等于______度.13、(4分)在矩形ABCD中,再增加条件_____(只需填一个)可使矩形ABCD成为正方形.三、解答题(本大题共5个小题,共48分)14、(12分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?15、(8分)某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:商场优惠条件甲商场第一台按原价收费,其余的每台优惠25%乙商场每台优惠20%(1)设学校购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出,与之间的关系式.(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?16、(8分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15,AB=9.求:(1)FC的长;(2)EF的长.17、(10分)解下列方程组和不等式组.(1);(2).18、(10分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.20、(4分)命题“如果x=y,那么”的逆命题是____________________________________________.21、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.22、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.23、(4分)李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)二、解答题(本大题共3个小题,共30分)24、(8分)(1)因式分解:;(2)解方程:25、(10分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.26、(12分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【详解】设AB=x米,则AE=(100+x)米,在Rt△AED中,∵,则DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由题意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故选:B.本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.2、A【解析】
根据分式的基本性质即可求出答案【详解】解:∵,∴分式的值不变.故选:A.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3、C【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.4、C【解析】
连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】解:连接BD,交AC于O点,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,
∴AC⊥BD,AO=AC,BD=2BO,
∴∠AOB=90°,
∵AC=6,
∴AO=3,
∴BO=,∴DB=8,
∴菱形ABCD的面积是×AC•DB=×6×8=24,
∴BC•AE=24,
AE=,故选C.此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.5、C【解析】
根据勾股定理逆定理、三角形的内角和逐一进行判断即可得.【详解】①由c2-a2=b2,可得c2=a2+b2,故可判断三角形ABC是直角三角形;②∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形;③∵c=a=b,∴a=b,∴a2+b2=2a2=c2,∴△ABC是直角三角形;④∵a=2,b=2,c=,∴a2+b2=12≠c2,∴△ABC不是直角三角形,故选C.本题考查了直角三角形的判定,主要涉及勾股定理的逆定理、三角形的内角和等,熟练掌握勾股定理的逆定理是解题的关键.6、A【解析】
把常数项3移到等号的右边,再在等式的两边同时加上一次项系数﹣6的一半的平方,配成完全平方的形式,从而得出答案.【详解】解:∵x2﹣6x+3=0,∴x2﹣6x=﹣3,∴x2﹣6x+9=6,即(x﹣3)2=6,故选:A.本题考查了一元二次方程的解法配方法,熟练掌握配方的步骤是解题的关键7、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【解析】
根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装(x+2)台,所以甲安装66台所有时间为,乙队所用时间为,利用时间相等建立方程.【详解】乙队用的天数为:,甲队用的天数为:,则所列方程为:=故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≥-2【解析】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.10、y=3x-1【解析】解:设函数解析式为y+1=kx,∴1k=4+1,解得:k=3,∴y+1=3x,即y=3x-1.11、6【解析】分析:先证明BE=PE,AE=PD,把求PE+PD的长转化为求AB的长,然后作AF⊥BC于点F,在Rt△ABF中求AB的长即可.详解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∵PE//AC,∴∠BPE=∠C=30°,∴∠BPE=∠B=30°,∴BE=PE.∵PD//AB,PE//AC,∴四边形AEPD是平行四边形,∴AE=PD,∴PE+PD=BE+AE=AB.作AF⊥BC于点F.∴,.∵AB2=AF2+BF2,∴,∴AB=6,故答案为:6.点睛:本题考查了平行线的性质,等腰三角形的判定与性质,平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,根据题意把求PE+PD的长转化为求AB的长是是解答本题的关键.12、1【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=×(180°-50°)=1°,∴∠ECB=130°-1°=1°.故答案为1.本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.13、AB=BC【解析】分析:根据领边相等的矩形是正方形,即可判定四边形ABCD是正方形.详解:∵AB=BC,∴矩形ABCD是正方形.故答案为AB=BC点睛:本题考查了正方形的判定方法,熟练掌握正方形的判定方法是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【解析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),把(1,300)、(10,120)带入y=ax+b中得,解得,∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);把(10,120),(30,400)代入y=mx+n中得,解得,∴线段BC表示的函数关系式为y=14x-20(10<x≤30),综上所述.(2)由题意可知单件商品的利润为10-6=4(元/件),∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;当10<x≤30时,w=4×(14x-20)=56x-80,∴,日销售利润不超过1040元,即w≤1040,∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;当10<x≤30时,w=56x-80≤1040,解得x≤20,∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.本题考查应用题解方程,解题的关键是读懂题意.15、(1)y1=4500x+1500;y2=4800x;(2)答案见解析;(3)从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元【解析】
(1)根据题意列出函数解析式即可;(2)①若甲商场购买更优惠,可得不等式4500x+1500<4800x,解此不等式,即可求得答案;②若乙商场购买更优惠,可得不等式4500x+1500>4800x,解此不等式,即可求得答案;③若两家商场收费相同,可得方程4500x+1500=4800x,解此方程,即可求得答案;(3)根据题意列出函数解析式,再根据增减性即可进行解答.【详解】解:(1)y1=6000+(1-25%)×6000(x-1)=4500x+1500;y2=(1-20%)×6000x=4800x;(2)设学校购买x台电脑,若到甲商场购买更优惠,则:4500x+1500<4800x,解得:x>5,即当购买电脑台数大于5时,甲商场购买更优惠;若到乙商场购买更优惠,则:4500x+1500>4800x,解得:x<5,即当购买电脑台数小于5时,乙商场购买更优惠;若两家商场收费相同,则:4500x+1500=4800x,解得:x=5,即当购买5台时,两家商场的收费相同;(3)w=50a+(10-a)60=600-10a,当a取最大时,费用最小,∵甲商场只有4台,∴a取4,W=600-40=560,即从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元.本题考查了一元一次不等式实际应用问题,涉及了不等式与方程的解法,解题的关键是理解题意,根据题意求得函数解析式,然后利用函数的性质求解.16、(1)FC=3;(2)EF的长为5.【解析】
(1)由折叠性质可得AF=AD,由勾股定理可求出BF的值,再由FC=BC-BF求解即可;(2)由题意得EF=DE,设DE的长为x,则EC的长为(9-x)cm,在Rt△EFC中,由勾股定理即可求得EF的值.【详解】解:(1)∵矩形对边相等,∴AD=BC=15∵折叠长方形的一边AD,点D落在BC边上的点F处∴AF=AD=15,在Rt△ABF中,由勾股定理得,∴FC=BC·BF=15-12=3(2)折叠长方形的一边AD,点D落在BC边上的点F处∴EF=DE设DE=x,则EC=9·x,在Rt△EFC中,由勾股定理得,即解得x=5即EF的长为5。本题主要考查了折叠问题,解题的关键是熟记折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17、(1);(2).【解析】
(1)用加减消元法或代入消元法先消去一个未知数,化二元为一元,求解即可;(2)首先求出每个不等式的解集,然后找出它们的公共部分,该公共部分就是不等式组的解集.【详解】解:(1)①-②×2,得,.把代入②,得,.∴原方程组的解为.(2)由①,得,.由②,得,.∴原不等式组的解集为.本题考查的是解二元一次方程组和解一元一次不等式组,熟知加减消元法和代入消元法是解(1)题的关键,熟知不等式的基本性质是解(2)题的关键;对于求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小是空集.18、(1);;;(2)该企业每天生产甲、乙产品可获得总利润是元.【解析】
(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.故答案为:;;;(2)依题意,得:15×2(65-x)-(120-2x)•x=650,整理,得:x2-75x+650=0,解得:x1=10,x2=65(不合题意,舍去),∴15×2(65-x)+(120-2x)•x=2650,答:该企业每天生产甲、乙产品可获得总利润是2650元.本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.一、填空题(本大题共5个小题,每小题4分,共20分)19、5cm【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为18cm2,所以AC==6cm,因为菱形ABCD的面积为24cm2,所以BD==8cm,所以菱形的边长==5cm.故答案为:5cm.此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.20、逆命题“如果,那么x=y”.【解析】命题“如果x=y,那么x2=y2”的题设是“x=y”,结论是“x2=y2”,则逆命题的题设和结论分别为“x2=y2”和“x=y”,即逆命题为“如果x2=y2,那么x=y”.故答案为如果x2=y2,那么x=y.点睛:本题考查逆命题的概念:如果两个命题的题设和结论正好相反,那么这两个命题互为逆命题,如果把其中一个叫原命题,那么另一个叫它的逆命题.21、±1【解析】试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,解得a=1或a=-1,即a的值为±1.考点:1.三角形的面积;2.坐标与图形性质.22、360【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36°此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°23、1【解析】
首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.【详解】解:设每个羽毛球拍降价x元,由题意得:(40-x)(20+5x)=1700,即x2-31x+180=0,解之得:x=1或x=20,因为每个降价幅度不超过15元,所以x=1符合题意,故答案是:1.本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年股东之间权益分配协议3篇
- 2025年度SSL协议安全风险评估与管理合同3篇
- 2024食品供应链副食品供应专项协议版B版
- 2024版工程吊装安全协议3篇
- 2024有限责任公司发起人关于环境保护与社会责任协议3篇
- 动物学实验知到智慧树章节测试课后答案2024年秋泰山学院
- 2025年度农产品冷链物流铺货及追溯系统建设合同3篇
- 商业池塘租赁合同
- 乳品加工砌体施工合同
- 信息系统定制开发协议
- GA 1517-2018金银珠宝营业场所安全防范要求
- 气体状态方程课件
- 分期还款协议书
- 小区住户手册范本
- 浦发银行个人信用报告异议申请表
- 海康威视-视频监控原理培训教材课件
- 江苏省质量通病防治手册
- 7.激素及其作用机制
- 土壤肥料全套课件
- 毕业生延期毕业申请表
- 学校6S管理制度
评论
0/150
提交评论