专题13三角形-2023年中考数学一轮复习(原卷版)_第1页
专题13三角形-2023年中考数学一轮复习(原卷版)_第2页
专题13三角形-2023年中考数学一轮复习(原卷版)_第3页
专题13三角形-2023年中考数学一轮复习(原卷版)_第4页
专题13三角形-2023年中考数学一轮复习(原卷版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题13三角形三角形是中考数学的重要知识点,也是解几何部分的解答题的基础和关键,中考主要以选择题、填空题,以及渗透在解答题中,主要考查三角形的有关概念,全等三角形的判定与性质,特殊三角形的判定与性质,勾股定理等。主要体现的思想方法:转化的思想、分类讨论的思想、数形结合的思想等.一、三角形的有关概念与全等三角形1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。三角形具有稳定性。2、三角形的分类:三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)3、三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:1.AD是△ABC的BC上的中线.2.BD=DC=BC.注意:①三角形的中线是线段;(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD是△ABC的∠BAC的平分线.2.∠1=∠2=∠BAC.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.注意:三角形的中线、角平分线、高是均是线段。4、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。三角形的外角的定义三角形一边与另一边的延长线组成的角,叫做三角形的外角.注意:每个顶点处都有两个外角,但这两个外角是对顶角.三角形外角的性质(1)三角形的外角和等于360°(三个外角的和)。(2)三角形的一个外角等于它不相邻的两个内角之和.(3)三角形的一个角大于与它不相邻的任何一个内角.6、特殊三角形的性质和判定:1.有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。2.等腰三角形的性质:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。3.等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。4.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。5.等边三角形的判定:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形。7、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定2“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定3“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)全等三角形判定4—“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定5—在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)一、单选题1.下列各组线段能构成三角形的是()A.2cm,2cm,4cm B.2cm,3cm,4cmC.2cm,2cm,5cm D.2cm,3cm,6cm2.已知,图中的虚线部分是小明作的辅助线,则(

)A.是边的高 B.是边的高C.是边的高 D.是边的高3.下列说法中正确的是(

)A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.周长相等的两个三角形全等4.已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E6.下列命题:①真命题都是定理;②垂直于同一条直线的两条直线平行;③三角形的三条高线交于一点;④有两边和一个角对应相等的两个三角形全等;⑤全等三角形对应边上的高相等;⑥三角形中至少有一个角不小于60°.是真命题的有(

)个A.2 B.3 C.4 D.57.如图,中,,利用尺规在,上分别截取,,使;分别以,为圆心、以大于为长的半径作弧,两弧在内交于点;作射线交于点,若,为上一动点,则的最小值为(

)A.无法确定 B. C.1 D.28.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位量为CD,当一端C下滑至时,另一端D向右滑到,则下列说法正确的是(

)A.下滑过程中,始终有B.下滑过程中,始终有C.若,则下滑过程中,一定存在某个位置使得D.若,则下滑过程中,一定存在某个位置使得9.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是(

)A.甲、乙全等,丙、丁全等 B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等 D.甲、乙不全等,丙、丁不全等10.如图,Rt△ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE⊥AB,垂足为E,CF=BE,DF=DB,则∠ADE的度数为(

)A.40° B.50° C.70° D.71°二、填空题11.已知三角形三边长分别为2,9,,若为偶数,则这样的三角形有___________个.12.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,,则_______cm2.13.在△ABC和△DEF中,①AB=DE,②BC=EF,③AC=DF,④∠A=∠D,从这四个条件中选取三个条件能判定△ABC△DEF的方法共有___________种.14.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠C=____________,BE=______________.15.如图,,,垂足分别为D点E,CD与AE交于点F,若,,则CF的长是________.16.如图在△ABC中,D为AB中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥BC交AC于F,AC=8,BC=12,则BF的长为________.二、几何证明

1.命题和证明(1)命题定义:判断一件事情的句子.判断为正确的命题,叫做真命题;判断为错误的命题,叫做假命题.(2)演绎证明(简称证明)从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.要点:命题通常由题设、结论两部分组成,题设是已知的事项,结论是由已知事项推出的事项,可以写成“如果……那么……”的形式,“如果”开始的部分是题设,“那么”开始的部分是结论.2.公理和定理(1)公理:人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.(2)定理:从公理或其他真命题出发,用推理方法证明为正确的,并能进一步作为判断其他命题真假的依据,这样的真命题叫做定理.3.逆命题与逆定理(1)在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,则这两个命题叫互逆命题.其中一个命题叫原命题;另一个命题叫它的逆命题.(2)如果一个定理的逆命题经过证明也是定理,则这两个定理叫做互逆定理,其中一个叫另一个的逆定理.三、线段的垂直平分线和角的平分线1.线段的垂直平分线(1)线段垂直平分线的定义垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.(2)线段垂直平分线的性质定理线段垂直平分线上的点和这条线段两个端点的距离相等.MNBAMNBAP∴PA=PB(3)线段垂直平分线的性质定理的逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点:线段的垂直平分线定理与逆定理往往与边相等、角相等的证明密切相关,它提供了证明边、角相等的又一种重要的方法,在以后的学习中还会与直角三角形、角平分线、勾股定理等连在一起综合应用.2.角的平分线(1)角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.(2)角的平分线有下面的性质定理:①角平分线上的点到这个角的两边的距离相等.ABOABODEP如图:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.3.垂线的性质性质1:过一点有且只有一条直线与已知直线垂直.性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短.简称:垂线段最短.要点:(1)当题目中的条件涉及到角平分线上的点与角的两边的垂直关系时,利用角的平分线性质可直接得到垂线段相等,而不必用全等三角形来证,但是在书写过程中,不要漏掉垂直关系;(2)已知角的平分线,有两种常用的添加辅助线的方法:一是把角沿着角平分线翻折,在这个角的两边截取相等线段,从而创设两个全等的三角形;二是过角平分线上的点向角两边做垂线段,利用角平分线的性质定理及其逆定理来解题.四、轨迹

1.轨迹的定义把符合某些条件的所有点的集合叫做点的轨迹.要点:轨迹定义包含以下两层含义:其一、轨迹图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件(也称图形的纯粹性);其二、轨迹图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上(也称图形的完备性);所谓轨迹问题的证明就是用论证的方法证明得到的轨迹符合上述两层含义.2.三条基本轨迹轨迹1:和已知线段两个端点距离相等的点的轨迹是这条线段的垂直平分线;轨迹2:到已知角的两边距离相等的点的轨迹是这个角的平分线;轨迹3:到定点的距离等于定长的点的轨迹是以定点为圆心、以定长为半径的圆.3.交轨法作图利用轨迹相交进行作图的方法叫做交轨法.如果要求作的点(图形)同时要满足两个条件时,我们通常先作出满足条件A的轨迹,然后再作出满足条件B的轨迹,两轨迹的交点则同时满足条件A和条件B.交轨法是常用的作图方法,我们在利用尺规作三角形、线段的垂直平分线、角平分线时,都运用了交轨法.要点:“尺规作图”是指限用无刻度直尺和圆规来作几何图形,基本的尺规作图有如下几种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线;(4)经过一点作已知直线的垂线;(5)作线段的垂直平分线.五、直角三角形1.直角三角形全等的判定(1)直角三角形全等一般判定定理:直角三角形是特殊的三角形,一般三角形全等的判定方法也适用于直角三角形,即(SAS、ASA、SSS、AAS)(2)直角三角形全等的HL判定定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为:HL)综上:直角三角形全等的判定方法有SAS、ASA、SSS、AAS、HL.2.直角三角形的性质定理:直角三角形的两个锐角互余;定理:直角三角形斜边上的中线等于斜边的一半;推论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;推论:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.一、单选题1.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为(

)A. B. C.或 D.2.如图,在△ABC中,∠ACB=100°,D、E为AB边上的两点,且AC=AE,BC=BD,则∠DCE的度数为()A.45° B.40° C.35° D.30°3.下列命题中,逆命是假命题的是()A.两直线平行,同旁内角互补B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.直角三角形两条直角边的平方和等于斜边的平方4.如图,已知中,,F是高和的交点,,则线段的长度为(

)A.6 B.8 C.10 D.125.下列说法错误的是(

).A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点距离等于的点的轨迹是以点为圆心,半径长为的圆C.到直线距离等于的点的轨迹是两条平行于且与的距离等于的直线D.等腰三角形的底边固定,顶点的轨迹是线段的垂直平分线6.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=7∠BAE,则∠C的度数为()A.41° B.42° C.43° D.44°7.已知a,b是一个等腰三角形的两边长,且满足,则这个等腰三角形的周长为()A.10 B.11 C.10或11 D.128.如图,已知中,,是的平分线,是边上的高,与交于点,过点作交边于点,联结交于点,则下列结论中,不一定成立的是(

)A. B. C. D.二、填空题9.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.10.如图,在中,,D为上一点,且,,则____度11.如图,在等边ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_____度.12.到定点的距离等于定长的点的轨迹是______.13.如图分别是的中线和角平分线,若,则的度数是_______.14.如图,在中,,,,,则为______.15.在中,,,在直线上取一点,使,E为边上的中点,连接,则的度数为______.16.已知,在中,,于点,于点.若,则___________°.三、解答题17.如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:(1)△ABD≌△ACE;(2)试判断△ADE的形状,并证明.18.如图,在ΔABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=7,求ΔAEG的周长.(2)若∠BAC=110°,求∠EAG的度数.19.如图,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,(1)求证:BD=AE,并求出∠DOE的度数;(2)判断△CFG的形状并说明理由;(3)求证:OA+OC=OB.六、勾股定理①直角三角形直角边与斜边之间的大小关系定理:在直角三角形中,斜边大于直角边.②勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.③勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.一、单选题1.如图,在中,,,则(

)A. B. C. D.62.下列三个数中,能组成一组勾股数的是(

)A.,, B.,,C.12,15,9 D.,,3.如图,点P是以A为圆心,AB为半径的圆弧与数轴的交点,则数轴上点P表示的实数是(

)A.-2 B. C. D.4.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为

A.米 B.米 C.2米 D.米5.适合下列条件的中,直角三角形的个数为(

)①,,;②;③;④;⑤.⑥A.个 B.个 C.个 D.个6.如图,的顶点,,在边长为的正方形网格的格点上,则边长的高为(

)A. B. C. D.7.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为(

)A.11 B.15 C.10 D.228.如图,在中,,平分,垂直平分,若,则的值为(

)A. B. C.1 D.9.我们在学习勾股定理的第二课时时,以下图形可以用来验证勾股定理的有(

)个.A.1 B.2 C.3 D.410.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为(

)A. B. C. D.二、填空题11.已知直角三角形的两边长分别为3、4.则第三边长为________.12.命题“等边三角形的三个角都相等.”这个命题的逆命题是_________________________.这个逆命题是_________命题.(填真或假)13.在直角坐标系内,已知点,,且,那么的值是_______.14.如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为________15.如图,有一个圆柱形杯子,底面周长为12cm,高为8cm,A点在内壁距杯口2cm处,在A点正对面的外壁距杯底2cm的B处有一只小虫,小虫要到A处饱餐一顿至少要走______cm.(杯子厚度忽略不计)16.如图,已知等腰,,过点、分别做,的垂线交于点,与相交于点,若,,则的长为________.一、单选题1.(2022·上海静安·统考二模)下列说法中,不正确的是(

)A.周长相等的两个等边三角形一定能够重合 B.面积相等的两个圆一定能够重合C.面积相等的两个正方形一定能够重合 D.周长相等的两个菱形一定能够重合2.(2022·上海奉贤·统考二模)如图,在中,,点D在边的延长线上,根据图中尺规作图的痕迹,可知的度数为(

)A. B. C. D.3.(2020·上海·统考一模)三角形的外心是三角形的(

)A.三条中线的交点 B.三条角平分线的交点C.三边垂直平分线的交点 D.三条高所在直线的交点4.(2022·上海徐汇·统考二模)如图,两把完全相同的长方形直尺按如图方式摆放,记两把尺的接触点为点P.其中一把直尺边缘恰好和射线OA重合,而另一把直尺的下边缘与射线OB重合,上边缘与射线OA于点M,联结OP.若∠BOP=28°,则∠AMP的大小为(

)A.62° B.56° C.52° D.46°5.(2021·上海普陀·统考二模)已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是()A.BC=B'C' B.∠A=∠A′ C.∠C=∠C′ D.∠B=∠B′=90°6.(2022·上海黄浦·统考二模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论