版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省大连市103中学数学高一上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.2.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A. B.C. D.3.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,4.如图是某班名学生身高的频率分布直方图,那么该班身高在区间内的学生人数为A. B.C. D.5.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.6.已知,则的大小关系是A. B.C. D.7.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x01.002.03.0y0.240.5112.023.988.02在四个函数模型(a,b为待定系数)中,最能反映,y函数关系的是().A. B.C. D.8.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.9.函数()的最大值为()A. B.1C.3 D.410.已知,,满足,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.12.若,,则a、b的大小关系是______.(用“<”连接)13.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______14.函数的部分图象如图所示,则函数的解析式为________.15.计算___________.16.已知且,若,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形18.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范围19.已知函数图象的一个最高点和最低点的坐标分别为和(1)求的解析式;(2)若存在,满足,求m的取值范围20.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.21.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C2、D【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为;向左平移个单位得,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z,k=1时,.故选:D.3、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.4、C【解析】身高在区间内的频率为人数为,选C.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.5、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D6、B【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、B【解析】由题中表格数据画出散点图,由图观察实验室指数型函数图象【详解】由题中表格数据画出散点图,如图所示,观察图象,类似于指数函数对于A,是一次函数,图象是一条直线,所以A错误,对于B,是指数型函数,所以B正确,对于C,是对数型函数,由于表中的取到了负数,所以C错误,对于D,是反比例型函数,图象是双曲线,所以D错误,故选:B8、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B9、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.10、A【解析】将转化为是函数的零点问题,再根据零点存在性定理即可得的范围,进而得答案.【详解】解:因为函数在上单调递减,所以;;因为满足,即是方程的实数根,所以是函数的零点,易知函数f(x)在定义域内是减函数,因为,,所以函数有唯一零点,即.所以.故选:A.【点睛】本题考查对数式的大小,函数零点的取值范围,考查化归转化思想,是中档题.本题解题的关键在于将满足转化为是函数的零点,进而根据零点存在性定理即可得的范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【点睛】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应12、【解析】容易看出,<0,>0,从而可得出a,b的大小关系【详解】,>0,,∴a<b故答案为a<b【点睛】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.13、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;14、【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键15、2【解析】利用指数、对数运算法则即可计算作答.【详解】.故答案:216、##【解析】根据将对数式化为指数式,再根据指数幂的运算性质即可得解.【详解】解:因为,所以,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程18、(Ⅰ);(Ⅱ).【解析】Ⅰ由函数的定义域及值域的求法得,,可求Ⅱ先求解C,再由集合的补集的运算及集合间的包含关系得,解得【详解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【点睛】本题考查了函数的定义域及值域的求法,考查了集合的交集、补集的运算及集合间的包含关系,属于简单题19、(1),(2)【解析】(1)根据题意得到,所以,再代入数据计算得到,,得到答案.(2)因为,所以得到,得到计算得到答案.【详解】(1)由题意得,则.又,则,因,所以.,,因为的图象经过点,所以,所以,,因为,所以故(2)因为,所以从而,,因为,所以要使得存在满足,则,解得.故m的取值范围为【点睛】本题考查了三角函数的解析式,存在问题,计算函数的值域是解题的关键.20、(1)(2)【解析】(1)由奇函数的定义可得,即,化简即可得答案;(2)原问题等价于,从而有函数的值域即为的范围.小问1详解】解:因函数为奇函数,所以,即,所以,因为在上单调递增,所以,即,解得;【小问2详解】解:,由题意,,即,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度购车环保补贴申请合同3篇
- 二零二五版电子商务支付平台跨境支付合规审查合同3篇
- 二零二五年货车驾驶员驾驶技能考核及评价合同3篇
- 二零二五版房产抵押合同变更及合同履行监督协议6篇
- 二零二五版酒店物业管理安保保洁服务全面承包合同3篇
- 二零二五版高空作业安全协议书-高空雨棚安全检测与维护合同3篇
- 二零二五年度空压机租赁与能源管理优化合同3篇
- 二零二五版人工智能企业股权整合与行业应用开发合同3篇
- 二零二五年度会议礼品定制及赠送服务合同范本3篇
- 二零二五年度特种防盗门制造与销售承揽合同范本3篇
- 2020小升初复习-小升初英语总复习题型专题训练-完形填空15篇
- 2023年浙江省公务员考试面试真题解析
- GB/T 5796.3-2022梯形螺纹第3部分:基本尺寸
- GB/T 16407-2006声学医用体外压力脉冲碎石机的声场特性和测量
- 简洁蓝色科技商业PPT模板
- 钱素云先进事迹学习心得体会
- 道路客运车辆安全检查表
- 宋晓峰辣目洋子小品《来啦老妹儿》剧本台词手稿
- 附录C(资料性)消防安全评估记录表示例
- 噪音检测记录表
- 推荐系统之协同过滤算法
评论
0/150
提交评论