版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市十五校联盟联合体2025届高一上数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在区间上单调递增的是()A. B.C. D.2.已知幂函数的图象过点,则等于()A. B.C. D.3.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.24.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面一枚反面的概率为A. B.C. D.5.已知,,则A. B.C. D.6.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.7.函数的图象可能是()A. B.C. D.8.若函数,则的单调递增区间为()A. B.C. D.9.定义在上的奇函数满足,且当时,,则()A. B.2C. D.10.下列函数中,图象的一部分如图所示的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示,则函数的解析式为________.12.设函数,则________.13.设为向量的夹角,且,,则的取值范围是_____.14.函数的零点个数为_________.15.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.16.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.18.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.19.如图,正方体的棱长为1,CB′∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC垂直.20.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间21.若实数,,满足,则称比远离.(1)若比远离,求实数的取值范围;(2)若,,试问:与哪一个更远离,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据基本初等函数的单调性与奇偶性的定义判断可得;【详解】解:对于A:定义域为,且,即为偶函数,且在上单调递增,故A正确;对于B:定义域为,且,即为偶函数,在上单调递减,故B错误;对于C:定义域为,定义域不关于原点对称,故为非奇非偶函数,故C错误;对于D:定义域为,但是,故为非奇非偶函数,故D错误;故选:A2、A【解析】根据幂函数的定义,结合代入法进行求解即可.【详解】因为是幂函数,所以,又因为函数的图象过点,所以,因此,故选:A3、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.4、C【解析】用列举法得出:抛掷三枚古钱币出现的基本事件的总数,进而可得出所求概率.【详解】抛掷三枚古钱币出现的基本事件共有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反8中,其中出现两正一反的共有3种,故概率为.故选C【点睛】本题主要考查古典概型,熟记概率的计算公式即可,属于常考题型.5、C【解析】由已知可得,故选C考点:集合的基本运算6、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.7、C【解析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C8、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.9、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题10、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键12、6【解析】根据分段函数的定义,分别求出和,计算即可求出结果.【详解】由题知,,,.故答案为:6.【点睛】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.13、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.14、3【解析】作出函数图象,根据函数零点与函数图象的关系,直接判断零点个数.【详解】作出函数图象,如下,由图象可知,函数有3个零点(3个零点分别为,0,2).故答案为:315、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.16、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)在其定义域为单调增函数.【解析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【详解】解:(1)由,得,,得;所以;(2)该函数的定义域为,令,所以,所以,因为,,所以,所以在其定义域为单调增函数.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)运用向量的数量积求解即可.(Ⅱ)先根据单位向量的概念求得,再求的坐标试题解析:(Ⅰ)因为向量,所以,,所以,又因为,所以.即向量与的夹角为(Ⅱ)由题意得,,所以即向量的坐标为19、(1)30°(2)(3)见解析【解析】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法求AO与A′C′所成角的度数;(2)利用向量法求AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC的法向量垂直.【详解】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),设AO与A′C′所成角为θ,则cosθ,∴θ=30°,∴AO与A′C′所成角为30°.(2)∵(),面ABCD的法向量为(0,0,1),设AO与平面ABCD所成角为α,则sinα=|cos|,cosα,∴tanα.∴AO与平面ABCD所成角的正切值为.(3)C(0,1,0),(),(0,1,0),(﹣1,1,0),设平面AOB的法向量(x,y,z),则,取x=1,得(1,0,1),设平面AOC的法向量(a,b,c),则,取a=1,得(1,1,﹣1),∵1+0﹣1=0,∴平面AOB与平面AOC垂直.【点睛】本题主要考查空间角的求法和面面垂直的证明,意在考查学生对这些知识的理解掌握水平.20、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八大工种安全教育培训(建筑工程)
- 产妇血友病护理查房
- 《薛禄-胶人》阅读答案及翻译
- 社区护士家庭访视的沟通唐莹教授护患沟通护患关系
- 《女性养生讲座》课件
- 《周管理学大》课件
- 公式计算函数y=25x3+5x+arcsin9x的导数
- 《精细有机合成化学》课件
- 下肢动脉硬化闭塞手术
- 探索社区背景社会工作专业教学案例宝典
- 2023年江苏小高考历史试卷含答案1
- 酒店事故风险评估报告
- 2022年全国统一高考日语真题试卷及答案
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- GB/T 28655-2012业氟化氢铵
- 氧气(MSDS)安全技术说明书
- 第一章膳食调查与评价
- GB 5606.3-2005卷烟第3部分:包装、卷制技术要求及贮运
- 工程制图 第4章 截交线和相贯线
- 糖原的合成与分解培训课件
- 劳动关系协调基础知识课件
评论
0/150
提交评论