福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题含解析_第1页
福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题含解析_第2页
福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题含解析_第3页
福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题含解析_第4页
福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省清流县第二中学2025届高一数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,集合,则A. B.C. D.2.已知指数函数的图象过点,则()A. B.C.2 D.43.已知条件,条件,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知角的终边过点,则()A. B.C. D.15.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.6.命题“,”的否定为()A., B.,C., D.,7.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限8.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.9.若直线与直线互相垂直,则等于(

)A.1 B.-1C.±1 D.-210.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.12.已知幂函数y=xα的图象经过点2,8,那么13.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数14.已知幂函数f(x)是奇函数且在上是减函数,请写出f(x)的一个表达式________15.已知实数满足,则________16.函数的定义域是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求的值;(2)判断并证明在的单调性.18.设函数.(1)当时,求函数的最小值;(2)若函数的零点都在区间内,求的取值范围.19.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,试求实数的取值范围20.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.21.某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为分.根据打分结果按,分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.(1)求餐厅满意指数频率分布直方图中的值;(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);参考公式:,其中为的平均数,分别为对应的频率.(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】交集是两个集合的公共元素,故.2、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C3、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B4、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B5、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D6、C【解析】由全称命题的否定是特称命题可得答案.【详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.7、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题8、C【解析】将,成立,转化为,对一切成立,由求解即可.【详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.9、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题10、A【解析】用正方体的体积减去四个三棱锥的体积【详解】由,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.12、3【解析】根据幂函数y=xα的图象经过点2,8,由2【详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:313、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:14、【解析】由题意可知幂函数中为负数且为奇数,从而可求出解析式【详解】因为幂函数是奇函数且在上是减函数,所以为负数且为奇数,所以f(x)的一个表达式可以是(答案不唯一),故答案为:(答案不唯一)15、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.16、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)在上单调递增,在上单调递减,证明过程见解析.(1)【解析】(1)根据奇函数的性质和定义进行求解即可;(2)根据函数的单调性的定义进行判断证明即可.【小问1详解】因为是奇函数,所以,因为,所以是奇函数,因此;【小问2详解】在上单调递增,在上单调递减,证明如下:设是上的任意两个实数,且,,当时,,所以在上单调递增,当时,,所以在上单调递减.18、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当,即时,.综上,(2)∵函数的零点都在区间内,等价于函数的图象与轴的交点都在区间内.∴故的取值范围是19、(1)[-4,﹢∞);(2)【解析】(1)将原函数转化为二次函数,根据求二次函数最值的方法求解即可.(2)由题意得,求得,然后通过解对数不等式可得所求范围【详解】(1)由题意得,即的值域为[-4,﹢∞).(2)由不等式对任意实数恒成立得,又,设,则,∴,∴当时,=∴,即,整理得,即,解得,∴实数x的取值范围为【点睛】解答本题时注意一下两点:(1)解决对数型问题时,可通过换元的方法转化为二次函数的问题处理,解题时注意转化思想方法的运用;(2)对于函数恒成立的问题,可根据题意转化成求函数的最值的问题处理,特别是对于双变量的问题,解题时要注意分清谁是主变量,谁是参数20、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.21、(1),(2)餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别为,(3)答案见解析【解析】(1)根据频率的含义和性质列方程,即可解得:,;(2)根据平均数和方差的定义,然后运算即可;(3)平均数和方差在实际生活中的应用,平均满意度越高,就越会受到欢迎.【小问1详解】因为餐厅满意指数在中有30人,则有:解得:根据总的频率和为1,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论