版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北名师联盟高一上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则()A. B.C. D.2.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.3.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度4.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.45.已知,,,则()A. B.C. D.6.下列各式化简后的结果为cosxA.sinx+πC.sinx-π7.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1258.已知全集,,,则()=()A.{} B.{}C.{} D.{}9.如图一铜钱的直径为毫米,穿径(即铜钱内的正方形小孔边长)为毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为A. B.C. D.10.下列不等关系中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义域为的奇函数,则的解集为__________.12.已知函数是定义在上的奇函数,当时,为常数),则=_________.13.若函数在区间上没有最值,则的取值范围是______.14.cos(-225°)=______15.当时,函数的值总大于,则的取值范围是________16.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求,;(2)若,求实数的取值范围18.若集合,,.(1)求;(2)若,求实数的取值范围.19.如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得.(Ⅰ)求证:AE⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB,并说明理由20.国际上常用恩格尔系数r来衡量一个国家或地区的人民生活水平.根据恩格尔系数的大小,可将各个国家或地区的生活水平依次划分为:贫困,温饱,小康,富裕,最富裕等五个级别,其划分标准如下表:级别贫困温饱小康富裕最富裕标准r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地区每年底计算一次恩格尔系数,已知该地区2000年底的恩格尔系数为60%.统计资料表明:该地区食物支出金额年平均增长4%,总支出金额年平均增长.根据上述材料,回答以下问题.(1)该地区在2010年底是否已经达到小康水平,说明理由;(2)最快到哪一年底,该地区达到富裕水平?参考数据:,,,21.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】详解】分析:求解出集合,得到,即可得到答案详解:由题意集合,,则,所以,故选C点睛:本题考查了集合的混合运算,其中正确求解集合是解答的关键,着重考查了学生的推理与运算能力2、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等3、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C4、C【解析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.5、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.6、A【解析】利用诱导公式化简每一个选项即得解.【详解】解:A.sinx+B.sin2π+xC.sinx-D.sin2π-x故选:A7、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D8、D【解析】先求得,再求与集合的交集即可.【详解】因为全集,,,故可得,则().故选:.9、B【解析】由题意结合几何概型公式可得:该粒米未落在铜钱的正方形小孔内的概率为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.10、C【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答.【详解】对于A,,而函数在单调递增,显然,则,A不正确;对于B,因为,所以,故,B不正确;对于C,显然,,,C正确;对于D,因为,所以,即,D不正确.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:12、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.13、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.14、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”15、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,16、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)18、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.19、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)(Ⅱ)利用判定定理证明线面平行时,关键是在平面内找一条与已知直线平行的直线,解题时可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过平行线分线段成比例等.证明直线和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推论.(3)利用面面平行的性质.(4)利用面面垂直的性质.(Ⅲ)判定面面垂直的方法(1)面面垂直的定义,即证两平面所成的二面角为直角;(2)面面垂直的判定定理试题解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC⊂平面DCE.∴AE⊥平面CDE.(2)取AB中点H,连接GH、FH,∴GH∥BD,FH∥BC,又GH∩FH=H,∴平面FHG∥平面BCD,∴GF∥平面BCD.(3)取线段AE的中点R,则平面BDR⊥平面DCB取线段DC的中点M,取线段DB中点H,连接MH,RH,BR,DR在△DEC中,∵M为线段DC,H为线段DB中点,R为线段AE中点又,∴RH⊥DC10分∴RH⊥面DCB∵RH⊂平面DRB平面DRB⊥平面DCB即取AE中点R时,有平面DBR⊥平面DCB12分(其它正确答案请酌情给分)考点:立体几何综合应用20、(1)已经达到,理由见解析(2)2022年【解析】(1)根据该地区食物支出金额年平均增长4%,总支出金额年平均增长的比例列式求解,判断十年后是否达到即可.(2)假设经过n年,该地区达到富裕水平,列式,利用指对数互化解不等式即可.【小问1详解】该地区2000年底的恩格尔系数为%,则2010年底的思格尔系数为因为所以1,则所以所以该地区在2010年底已经达到小康水平【小问2详解】从2000年底算起,设经过n年,该地区达到富裕水平则,故,即化为因为,则In,所以因为所以所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭装修工程合同签订注意事项
- 室内装潢工程监理合同示范
- 广州市劳动合同范本样式
- 罗麦命运是培训
- 房屋买卖合同协议书的签订要点
- 2024年合同承包的英文
- 12盘古开天地 公开课一等奖创新教学设计-2
- 年产xx打印色带项目建议书
- 年产xxx牙齿轮项目投资分析报告
- 条形板项目可行性研究报告
- 人教鄂教版(2024秋)一年级上册3.9《纸制品》 教案
- 《体育与健康》初二级(水平四)《校园定向越野》 教学设计
- 青少年校园篮球特色学校现状及发展对策研究
- 网课智慧树知道《国际物流(双语)》章节测试答案
- 珍爱生命 预防溺水-中小学生防溺水安全教育主题班会课件
- 智慧港口应用系统建设方案
- 四年级数学(四则混合运算带括号)计算题专项练习与答案汇编
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- TD/T 1013-2013 土地整治项目验收规程(正式版)
- 互联网金融 个人网络消费信贷 贷后催收风控指引
- 律师事务所业务操作规程
评论
0/150
提交评论