版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级下册数学期末考试试卷一、单选题1.下列各式中,能与合并的二次根式是(
)A.B.C.D.2.下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.下列函数中,正比例函数是(
)A.y=B.y=C.y=x+4D.y=x24.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数,中位数分别为(
)考试分数(分)2016128人数241853A.24,18B.20,16C.20,12D.24,55.如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=()A.5cmB.cmC.cmD.cm6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④7.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.58.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。其中正确的结论有()A.1个B.2个C.3个D.4个9.为正方形内一点,且是等边三角形,求的度数是(
)A.B.C.D.10.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.修车时间为15分钟二、填空题11.若=x5,则x的取值范围是__________.12.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.571.2小李7.17.585.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.13.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是_____分.14.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.15.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是___________16.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为_______.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图的方式放置,A1,A2,A3…和点C1,C2,C3…分别在直线y=x+2和x轴上,则点C2020的横坐标是__________.18.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.三、解答题19.计算:(1)6+;
(2)()2+2×320.某校全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整:(2)捐款金额的众数是元,中位数是元;(3)若该校共有2000名学生参加捐款,根据样本平均数估计该校大约可捐款多少元?21.如图,菱形ABCD的对角线AC、BD相交于点O,,,OE与AB交于点F.(1)求证:四边形AEBO为矩形;(2)若OE=10,AC=16,求菱形ABCD的面积.22.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.23.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?24.如图,在矩形纸片中,,将其折叠,使点与点重合,折痕为.(1)求证:;(2)求的长.25.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.26.如图,△ABC为等腰直角三角形,∠ACB=90°,D,E分别是AC、AB的中点,P为直线DE上的一点,PQ⊥PC交直线AB于Q.(1)如图1,当P在ED延长线上时,求证:EC+EQ=EP;(2)当P在射线DE上时,请直接写出EC,EQ,EP三条线段之间的数量关系.参考答案1.D【详解】解:A、与不是同类二次根式,不能合并,故A不合题意;B、,与不是同类二次根式,不能合并,故B不合题意;C、,与不是同类二次根式,不能合并,故C不合题意;D、,与是同类二次根式,能合并,故D符合题意;故选:D2.C【详解】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.3.B【解析】【分析】根据正比例函数定义对各选项进行逐一分析即可.【详解】A、是反比例函数,故本选项错误;B、是正比例函数,故本选项正确;C、y=x+4是一次函数,故本选项错误;D、y=x2是二次函数,故本选项错误.故选B.【点睛】考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数是解答此题的关键.4.B【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:B.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.5.C【解析】【分析】根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=24,即可求DH长.【详解】由已知可得菱形的面积为×6×8=24.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=24,即5DH=24,解得DH=cm.故选C.【点睛】主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.6.B【解析】【详解】A、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当③AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选B.7.B【解析】【详解】解:如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,∵OB=6,∴点B到直线y=x的距离为6×,∵>3,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,AB的垂直平分线与直线的交点有一个所以,点C的个数是1+2=3.故选B.8.A【解析】【详解】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.9.D【解析】【分析】由E为正方形ABCD内一点,且△EBC是等边三角形,易证得△ABE是等腰三角形,且AB=BE,易求得∠ABE=∠ABC-∠EBC=30°,继而求得答案.【详解】解:∵E为正方形ABCD内一点,且△EBC是等边三角形,∴∠ABC=90°,∠EBC=60°,AB=CB=EB,∴∠ABE=∠ABC-∠EBC=30°,∴∠EAB=∠AEB==75°.故答案为:75°.【点睛】此题考查了正方形的性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.10.D【解析】【分析】观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】A、自行车发生故障时离家距离为米,正确;B、学校离家的距离为米,正确;C、到达学校时共用时间分钟,正确;D、由图可知,修车时间为分钟,可知D错误.故选:D.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.x≥5【解析】【分析】根据,由此性质求得答案即可.【详解】解:,∴5-x≤0∴x≥5.故答案为:x≥5.【点睛】此题考查二次根式的性质:在化简中的应用,熟练运用有关的性质是解题的关键.12.小李【解析】【分析】根据方差的意义知,波动越大,成绩越不稳定.观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,【详解】观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定13.88【解析】【详解】解:∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分),故答案为:88.14.1cm【解析】【分析】根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中,AE==4,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.15.6.5【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD=AB.【详解】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD=AB=6.5,故答案是:6.5.【点睛】本题考查的是三角形中位线定理,掌握线段垂直平分线的判定和性质,三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.2或2或2【解析】【分析】本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.【详解】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴,在直角三角形ABP中,,如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为或或2.【点睛】考点:勾股定理.17.22021-2【解析】【分析】根据直线解析式先求出A1(0,2),OC1=OA1=2,得出C1
的横坐标是2=21,再求出C2的横坐标是6=21+22,C3
的纵坐标是14=21+22+23,得出规律,即可得出结果【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1(0,2),OC1=OA1=2∴C1(2,0),其中2=21∴A2(2,4),OC2=2+4=6∴C2(6,0),其中6=21+22∴A3(6,8),OC3=6+8=14∴C3(14,0),其中14=21+22+23…∴点Cn的坐标是(21+22+23+…+2n,0)∴Cn的坐标是(2n+1-2,0)∴点Cn的横坐标是2n+1-2,故当n=2020时,点C2020的横坐标是22021-2,故答案为22021-2【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出C1、C2、C3
的坐标得出规律是解决问题的关键.18.x<1【解析】【分析】写出直线y=kx在直线y=﹣x+3下方所对应的自变量的范围即可.【详解】观察图象即可得不等式kx<-x+3的解集是x<1.【点睛】本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.19.(1);(2)5+.【解析】【分析】(1)根据二次根式的性质进行化简,然后计算即可;(2)根据完全平方公式,二次根式的性质进行化简,然后计算即可.【详解】解:(1)原式=6×+=+=;(2)原式=3++2+2×3=5++=5+.【点睛】本题考查了二次根式的混合运算,二次根式的化简,完全平方公式,掌握运算法则是解题关键.20.(1)50,见解析;(2)10,12.5;(3)根据样本平均数估计该校大约可捐款26200元.【解析】【分析】(1)由捐款15元的人数及其所占百分比可得总人数,再减去其它捐款数的人数求出捐款10元的人数,从而补全图形;(2)根据众数和中位数的概念求解可得;(3)先求出这50个人捐款的平均数,再乘以总人数即可得.【详解】(1)本次抽查的学生总人数为14÷28%=50(人)则捐款10元的人数为50﹣(9+14+7+4)=16(人)补全图形如下:(2)捐款的众数为10元,中位数为=12.5(元)故答案为10、12.5;(3)=13.1(元)则根据样本平均数估计该校大约可捐款2000×13.1=26200(元).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)见解析;(2)96【解析】【分析】(1)根据菱形的性质结合已知条件即可得证;(2)由(1)所得结合菱形的性质计算出、的长度,再计算面积即可.【详解】解:(1)证明:∵,,∴四边形AEBO为平行四边形,又∵四边形ABCD为菱形,∴,∴,∴平行四边形AEBO为矩形;(2)∵四边形AEBO为矩形,∴AB=OE=10,又∵四边形ABCD为菱形,∴AO=AC=8,∴,∴,∴BD=2BO=12,∴菱形ABCD的面积=.【点睛】本题考查了矩形的判定,菱形的性质,勾股定理;掌握好相关的基础知识是解决本题的关键.22.(1)见解析;(2)MN.【解析】【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=,∴MN=.【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.23.解:(1)日销售量的最大值为120千克.(2)(3)第10天的销售金额多.【解析】【详解】试题分析:(1)观察图象,即可求得日销售量的最大值;(2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;(3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b,由点(5,32),(15,12)在z=kx+b的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.试题解析:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k1x,∵直线y=k1x过点(12,120),∴k1=10,∴函数解析式为y=10x,当12<x≤20,设日销售量与上市时间的函数解析式为y=k2x+b,∵点(12,120),(20,0)在y=k2x+b的图象上,∴,解得:∴函数解析式为y=-15x+300,∴小明家樱桃的日销售量y与上市时间x的函数解析式为:;(3)∵第10天和第12天在第5天和第15天之间,∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n,∵点(5,32),(15,12)在z=mx+n的图象上,∴,解得:,∴函数解析式为z=-2x+42,当x=10时,y=10×10=100,z=-2×10+42=22,销售金额为:100×22=2200(元),当x=12时,y=120,z=-2×12+42=18,销售金额为:120×18=2160(元),∵2200>2160,∴第10天的销售金额多.考点:一次函数的应用.24.(1)见解析;(2)BE=5.【解析】【分析】(1)根据翻折变换的性质可知∠BEF=∠DEF,BE=DE,而四边形ABCDE是矩形,那么AD//BC,于是∠DEF=∠BFE,则有∠BEF=∠BFE,可得BF=BE;(2)设AE=x,那么BE=9-x,在Rt△BAE中,利用勾股定理可求AE,进而可求BE=5.【详解】(1)∵四边形ABCD是矩形∴AD//BC,∴∠DEF=∠EFB由折叠可知∠BEF=∠DEF∴∠BEF=∠EFB.∴BE=BF.
(2)在矩形ABCD中,∠A=90°,由折叠知BE=ED,设AE=x,那么DE=BE=9-x,在Rt△BAE中,AB2+AE2=BE2,即32+x2=(9-x)2,解得x=4,即AE=4,∴BE=9-4=5.【点睛】本题考查了翻折变换、勾股定理、矩形的性质.解题的关键是注意翻折前后的对应线段和对应角分别相等.25.(1)见解析;(2)四边形BECD是菱形,理由见解析.【解析】【分析】(1)利用平行四边形对边平行可解答.(2)利用证明菱形的条件即可解答.【详解】证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展览馆监控施工合同模
- 校园保安人员招聘合同范本
- 地下停车场深水井施工协议
- 智能餐饮服务系统安全管理办法
- 航空航天科研项目招标模板
- 眼镜店房屋租赁协议书
- 职业培训空调使用指南
- 汽车行业法律顾问聘用合同
- 旅游景区开发招投标合同安排
- 家具设计履约评价管理办法
- 低温余热回收利用及节能技术
- 腾讯广告数据系统架构介绍
- 四年级上册数学课件 - 第五单元 第6课时《认识梯形》 人教版(共12张PPT)
- GB∕T 12362-2016 钢质模锻件 公差及机械加工余量
- 职工履历表样表
- 风景名胜区保护管理执法检查评分表
- 沪教版三年级上学期语文阅读理解专项精选练习
- 石化公司员工行为规范
- 桥梁施工安全方针和现场安全管理目标
- 人工智能课件介绍
- 5.2电动汽车上电与下电功能控制课件
评论
0/150
提交评论