版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲整式的加减1.理解同类项的概念.2.了解合并同类项的法则,能进行同类项的合并,解决一些实际问题.3.在具体情境中体会去括号的必要性,能运用运算律去括号.4.总结去括号的法则,并能利用法则解决简单的问题.5.会进行整式的加减运算,并能说明其中的道理.知识点01同类项1.同类项概念:所含_______相同,并且相同字母的_______也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.【答案】字母;指数知识点02去(添)括号法则去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.【注意】:(1)要注意括号前面的符号,它是去括号后括号内各项是否变号的依据;(2)去括号时应将括号前的符号连同括号一起去掉;(3)括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号;(4)括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项;(5)遇到多层括号一般由里到外,逐层去括号.知识点3整式的加减1.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(2)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(3)运算结果,常将多项式的某个字母的降幂(升幂)排列.2.整式加减的一般步骤(1)如果有括号,那么先去括号;(2)观察有无同类项;(3)利用加法的交换律和结合律,分组同类项;(4)合并同类项.题型01同类型的判断【典例1】(2023秋·全国·七年级专题练习)下列各组单项式中,是同类项的是(
)A.与 B.与C.与 D.与【变式1】(2023秋·甘肃白银·七年级统考期末)下列单项式中,与是同类项的是(
)A. B. C. D.【变式2】(2023秋·内蒙古呼伦贝尔·七年级校考期中)下列说法正确的是(
)A.与是同类项 B.与是同类项C.与是同类项 D.与是同类项题型02已知同类型求指数中字母或代数式的值【典例2】(2023秋·湖南益阳·七年级统考期末)若单项式与是同类项.则的值是.【变式1】(2023春·青海海东·七年级统考阶段练习)如果与是同类项,则的值为.【变式2】(2023秋·河南驻马店·七年级统考期末)已知单项式与是同类项,则代数式的值是.题型03合并同类型【典例3】(2023秋·全国·七年级专题练习)合并同类项:.【变式1】(2023秋·江西南昌·七年级统考期末)化简:【变式2】(2023·天津河西·天津市新华中学校考一模)计算的结果等于.题型04去括号【典例4】(2023秋·七年级课前预习)化简:的结果是.【变式1】(2023秋·全国·七年级专题练习)化简:.【变式2】(2023·全国·七年级假期作业)化简:.题型05添括号【典例5】(2023春·浙江绍兴·七年级统考期末)下列多项式的变形中,正确的是(
)A. B.C. D.【变式1】(2023秋·湖北武汉·八年级统考期末)等式,括号内应填上的项为(
)A. B. C. D.【变式2】(2023秋·全国·七年级专题练习)下列各式中添括号正确的是(
)A. B.C. D.题型06整式的加减运算【典例6】(2023秋·四川眉山·七年级统考期末)化简:.【变式1】(2023秋·全国·七年级专题练习)计算:(1);(2).【变式2】(2023秋·全国·七年级专题练习)计算:(1);(2).题型07整式的加减中化简求值【典例7】(2023春·甘肃定西·七年级统考期末)先化简,再求值:,其中.【变式1】(2023春·宁夏银川·七年级校考开学考试)先化简,再求值:;其中,.【变式2】(2023春·黑龙江哈尔滨·六年级哈尔滨市萧红中学校考阶段练习)先化简,再求值:,其中,.【变式3】(2023春·福建福州·七年级统考开学考试)先化简,后求值:,其中.题型08整式的加减的应用【典例8】(2023秋·河南漯河·七年级校考期末)某公园里一块草坪的形状如图中的阴影部分(长度单位:m).
(1)用整式表示草坪的面积;(2)若,求草坪的面积.【变式1】(2023秋·广东韶关·七年级统考期末)今年暑假小明家买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米).(1)求出用含、的代数式表示这套房的总面积是多少平方米?(2)当,时,若铺1平方米地砖平均费用120元,求这套住宅铺地砖总费用.【变式2】(2023秋·广西南宁·七年级校考期末)如图,用三种大小不同的5个正方形和1个长方形(阴影部分)拼成长方形,其中,最小的正方形的边长为.
(1)________,__________;(用含的代数式表示)(2)用含的代数式表示长方形的周长;(3)当时,求长方形的周长.题型09整式的加减中的无关型问题【典例9】(2023春·山东济南·六年级统考开学考试)若代数式不含项,则.【变式1】(2023秋·河南漯河·七年级校考期末)若关于x,y的多项式不含二次项,则的值为.【变式2】(2023秋·全国·七年级专题练习)当m=时,关于x的多项式与多项式的和中不含项.一、单选题1.(2023秋·广西南宁·七年级统考期中)下列各组属于同类项的是(
)A.与 B.与 C.与 D.与2.(2023秋·四川眉山·七年级统考期末)下列计算正确的是(
)A. B. C. D.3.(2023春·河南周口·七年级统考期中)若与是同类项,则的值为(
)A.1 B.2 C.3 D.44.(2023秋·全国·七年级专题练习)下列变形中错误的是()A.B.C.D.5.(2023春·浙江杭州·七年级校考期中)在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放留,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,若要知道图2中阴影部分的周长与图1中阴影部分的周长的差,只要测量图中哪条线段的长(
)
A. B. C. D.二、填空题6.(2023秋·吉林长春·七年级统考期末)计算:.7.(2023秋·湖南永州·七年级统考期末)如果单项式与是同类项,则.8.(2023秋·广西南宁·七年级统考期中)若关于、的多项式中不含项,则.9.(2023秋·湖北黄冈·七年级统考期末)若代数式的值是4,则的值是.10.(2023春·河南郑州·七年级校考期中)一个底面是正方形的长方体,高为,底面正方形边长为.如果它的高不变,底面正方形边长增加了,那么它的体积增加了.三、解答题11.(2023秋·全国·七年级专题练习)化简:(1);(2).12.(2023秋·全国·七年级专题练习)先化简,再求值,其中,.13.(2023秋·新疆乌鲁木齐·七年级校考期末)化简求值(1)化简∶;(2)先化简,再求代数式的值∶,其中.14.(2023春·山东青岛·七年级统考开学考试)(1)化简:.(2)先化简,再求值:,其中.15.(2023秋·河南周口·七年级校考期末)(1)计算:;(2)计算:;(3)先化简,再求值,其中.16.(2023秋·全国·七年级专题练习)学习了整式的加减运算后,老师给同学们性了一个任务:已知,自行给取一个喜欢的数.先化简下列式子,再代入求值..小杜、小康、小磊三人经过化简计算,后来交流结果时发现,虽然三人给取的值都不同,但计算结果却完全一样.请解释出现这种情况的原因,并求这个计算结果.17.(2023秋·四川眉山·七年级统考期末)已知:,.(1)计算的表达式;(2)若代数式的值与字母的取值无关,求代数式的值.18.(2023春·山东青岛·六年级统考期中)如图,,线段上一点P,分别以为边做正方形.
(1)设,求阴影部分的面积(用含有a,x的代数式表示);(2)当时,阴影部分面积为,当P为线段中点时,阴影部分面积为,比较与的大小.
第03讲整式的加减1.理解同类项的概念.2.了解合并同类项的法则,能进行同类项的合并,解决一些实际问题.3.在具体情境中体会去括号的必要性,能运用运算律去括号.4.总结去括号的法则,并能利用法则解决简单的问题.5.会进行整式的加减运算,并能说明其中的道理.知识点01同类项1.同类项概念:所含_______相同,并且相同字母的_______也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.【答案】字母;指数知识点02去(添)括号法则去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.【注意】:(1)要注意括号前面的符号,它是去括号后括号内各项是否变号的依据;(2)去括号时应将括号前的符号连同括号一起去掉;(3)括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号;(4)括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项;(5)遇到多层括号一般由里到外,逐层去括号.知识点3整式的加减1.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(2)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(3)运算结果,常将多项式的某个字母的降幂(升幂)排列.2.整式加减的一般步骤(1)如果有括号,那么先去括号;(2)观察有无同类项;(3)利用加法的交换律和结合律,分组同类项;(4)合并同类项.题型01同类型的判断【典例1】(2023秋·全国·七年级专题练习)下列各组单项式中,是同类项的是(
)A.与 B.与C.与 D.与【答案】B【分析】根据同类项的定义即可求解,所含字母相同,且相同字母的指数也相同的两个单项式是同类项.【详解】解:A、与,字母相同,但对应字母的次数不同,不是同类项,故该选项不符合题意;B、与是同类项,故该选项符合题意;C、与,所含字母不尽相同,不是同类项,故该选项不符合题意;D、与,字母相同,但对应字母的次数不同,不是同类项,故该选项不符合题意.故选:B.【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.【变式1】(2023秋·甘肃白银·七年级统考期末)下列单项式中,与是同类项的是(
)A. B. C. D.【答案】C【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【详解】A、相同字母的指数不同,故A不符合题意B、相同字母的指数不同,故B不符合题意;;C、字母相同且相同字母的指数也相同,故C符合题意;D、相同字母的指数不同,故D不符合题意;故选C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.掌握上述知识点是解题的关键.【变式2】(2023秋·内蒙古呼伦贝尔·七年级校考期中)下列说法正确的是(
)A.与是同类项 B.与是同类项C.与是同类项 D.与是同类项【答案】D【分析】根据同类项的定义进行分析判断.【详解】解:A、与所含字母不同,不是同类项,不符合题意;B、与是所含相同字母x的指数不同,不是同类项,不符合题意;C、与所含相同字母x的指数不同,不是同类项,不符合题意;D、与含有相同的字母,且相同字母的指数相同,是同类项,符合题意.故选:D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.题型02已知同类型求指数中字母或代数式的值【典例2】(2023秋·湖南益阳·七年级统考期末)若单项式与是同类项.则的值是.【答案】2【分析】先根据同类项的定义求得m和n,然后计算即可.【详解】解:∵单项式与是同类项,∴,∴,∴,故答案为:2.【点睛】此题考查了同类项的定义:含有相同字母,且相同字母的指数也分别相等的项是同类项.【变式1】(2023春·青海海东·七年级统考阶段练习)如果与是同类项,则的值为.【答案】【分析】根据同类项是定义:所含字母相同,相同字母的指数也相同的单项式是同类项,求出a和b的值,再将a和b的值代入即可求解..【详解】解:∵与是同类项,∴,解得:,∴,故答案为:.【点睛】本题主要考查了同类项的定义,解题的关键是掌握同类项是定义:所含字母相同,相同字母的指数也相同的单项式是同类项.【变式2】(2023秋·河南驻马店·七年级统考期末)已知单项式与是同类项,则代数式的值是.【答案】2023【分析】根据同类项是指所含字母相同,并且相同字母的指数也相同,求得,再整体代入计算即可.【详解】解:根据同类项的定义得:,,即,∴.故答案为:2023.【点睛】本题考查了同类项的定义,代数式的求值,掌握同类项的定义是解题的关键,即:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.题型03合并同类型【典例3】(2023秋·全国·七年级专题练习)合并同类项:.【答案】【分析】根据合并同类项的法则,进行计算即可.【详解】解:原式.故答案为:.【点睛】本题考查合并同类项.熟练掌握合并同类项的法则,字母和字母的指数不变,系数相加减即可.【变式1】(2023秋·江西南昌·七年级统考期末)化简:【答案】【分析】合并同类项即可求解.【详解】解:,故答案为:.【点睛】本题考查了合并同类项,掌握合并同类项的运算法则是解题的关键.【变式2】(2023·天津河西·天津市新华中学校考一模)计算的结果等于.【答案】【分析】根据合并同类项的方法即可求解【详解】原式【点睛】此题主要考查合并同类项,解题的关键是熟知整式的加减运算法则.题型04去括号【典例4】(2023秋·七年级课前预习)化简:的结果是.【答案】【分析】根据去括号的法则:括号前面为号,里面各项不变号;括号前面为号,里面各项要变号即可解答.【详解】解:∵,故答案为.【点睛】本题考查了去括号的法则,熟记去括号法则是解题的关键.【变式1】(2023秋·全国·七年级专题练习)化简:.【答案】【分析】按照运算法则先去括号,再合并同类项即可.【详解】解:故答案为:.【点睛】本题考查整式的加减混合运算.按照运算法则先去括号,再合并同类项即可.熟练掌握法则是解题的关键.【变式2】(2023·全国·七年级假期作业)化简:.【答案】/【分析】先去括号,然后合并同类项即可求解.【详解】解:,故答案为:.【点睛】本题考查了整式的加减,熟练掌握去括号法则与合并同类项是解题的关键.题型05添括号【典例5】(2023春·浙江绍兴·七年级统考期末)下列多项式的变形中,正确的是(
)A. B.C. D.【答案】A【分析】提取负号添括号时,每一项都需要变号.【详解】解:A:,A选项正确;B:,B选项错误;C:,C选项错误;D:,D选项错误.故选D【点睛】本题考查添括号.括号前面是负号,则括号里面每一项都需要变号.这是解决本题的关键.【变式1】(2023秋·湖北武汉·八年级统考期末)等式,括号内应填上的项为(
)A. B. C. D.【答案】B【分析】根据填括号的法则解答即可.【详解】根据填括号的法则可知,原式故选:B.【点睛】本题考查添括号的方法:添括号时,若括号前是“”,添括号后,括号里的各项都不改变符号;若括号前是“”,添括号后,括号里的各项都改变符号.【变式2】(2023秋·全国·七年级专题练习)下列各式中添括号正确的是(
)A. B.C. D.【答案】D【分析】根据添括号法则,逐一进行判断即可.【详解】解:A、,选项错误,不符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项正确,符合题意;故选D.【点睛】本题考查添括号.熟练掌握添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号,是解题的关键.题型06整式的加减运算【典例6】(2023秋·四川眉山·七年级统考期末)化简:.【答案】【分析】先去括号,再合并同类项即可得到答案.【详解】解:.【点睛】本题主要考查了整式的加减中的去括号、合并同类项,熟练掌握整式的加减中的去括号、合并同类项的运算法则是解题的关键.【变式1】(2023秋·全国·七年级专题练习)计算:(1);(2).【答案】(1)(2)【分析】(1)根据合并同类项法则,计算即可;(2)首先去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题考查了整式的加减法,解本题的关键在熟练掌握合并同类项的运算法则.【变式2】(2023秋·全国·七年级专题练习)计算:(1);(2).【答案】(1)(2)【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【详解】(1)解:原式;(2)解:原式.【点睛】本题考查整式的加减,解答本题的关键是明确去括号法则和合并同类项的方法.题型07整式的加减中化简求值【典例7】(2023春·甘肃定西·七年级统考期末)先化简,再求值:,其中.【答案】,.【分析】直接利用整式的加减运算法则合并同类项,再把已知数据代入得出答案.【详解】解:原式,当时,原式.【点睛】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.【变式1】(2023春·宁夏银川·七年级校考开学考试)先化简,再求值:;其中,.【答案】,18【分析】先去括号,再合并同类项,最后代入求值.【详解】解:,将,代入,得:原式.【点睛】本题考查整式加减的化简求值,解题的关键是掌握去括号法则和合并同类项法则.【变式2】(2023春·黑龙江哈尔滨·六年级哈尔滨市萧红中学校考阶段练习)先化简,再求值:,其中,.【答案】,5【分析】先去括号,再合并同类项,最后将a和b的值代入,按代数式指明的计算顺序计算即可.【详解】解:原式.当,时,原式.【点睛】本题主要考查了整式的加减—化简求值,解决问题的关键是熟练掌握运算顺序,去括号法则,合并同类项法则.【变式3】(2023春·福建福州·七年级统考开学考试)先化简,后求值:,其中.【答案】;【分析】先按照整式混合运算顺序和运算法则,以及去括号法则,将整式化简,再将x和y的值代入进行即可.【详解】解:
;当时,原式,.【点睛】本题主要考查了整式的化简求值,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则,注意去括号时,括号前为负时要变号.题型08整式的加减的应用【典例8】(2023秋·河南漯河·七年级校考期末)某公园里一块草坪的形状如图中的阴影部分(长度单位:m).
(1)用整式表示草坪的面积;(2)若,求草坪的面积.【答案】(1)平方米(2)440平方米【分析】(1)根据题意和图形中的数据可以用代数式表示出草坪的面积;(2)将代入(1)中的代数式,即可解答本题.【详解】(1)解:由题意可得,草坪的面积是:(平方米),答:草坪的面积是平方米;(2)当时,(平方米),∴草坪的面积是440平方米.【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式、求出相应的代数式的值,利用数形结合的思想解答.【变式1】(2023秋·广东韶关·七年级统考期末)今年暑假小明家买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米).(1)求出用含、的代数式表示这套房的总面积是多少平方米?(2)当,时,若铺1平方米地砖平均费用120元,求这套住宅铺地砖总费用.【答案】(1)平方米(2)4680元【分析】(1)根据图形和题意可以求出这套房子的总面积;(2)根据面积,从而可以求出这套住宅铺地砖的总费用.【详解】(1)解:这套房的总面积是平方米;(2)当,时,铺1平方米地砖平均费用120元,这套住宅铺地砖总费用(元).【点睛】此题考查了整式加减的应用,列代数式,已知字母的值求代数式的值,解题的关键是明确题意,求出住宅的总面积和总费用,利用数形结合的思想解答.【变式2】(2023秋·广西南宁·七年级校考期末)如图,用三种大小不同的5个正方形和1个长方形(阴影部分)拼成长方形,其中,最小的正方形的边长为.
(1)________,__________;(用含的代数式表示)(2)用含的代数式表示长方形的周长;(3)当时,求长方形的周长.【答案】(1),(2)(3)54【分析】(1)根据图形可得结合线段的和差、正方形的性质即可解答;(2)分别表示出和,然后再表示出周长即可;(3)把代入(2)所求结果中进行求解即可.【详解】(1)解:由图可知:,;故答案为:,;(2)解:长方形的宽为:;长为:,∴长方形的周长为:;(3)当时,.【点睛】本题主要考查了列代数式和代数式求值,理解各个图形的边长之间的数量关系是解答本题的关键.题型09整式的加减中的无关型问题【典例9】(2023春·山东济南·六年级统考开学考试)若代数式不含项,则.【答案】【分析】原式去括号合并得到最简结果,根据结果中不含项,求出a的值即可.【详解】解:,由结果中不含项,得到,即,故答案为:.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.【变式1】(2023秋·河南漯河·七年级校考期末)若关于x,y的多项式不含二次项,则的值为.【答案】【分析】先对多项式去括号,合并同类项,然后再根据不含二次项可求解、的值,进而代入求解即可.【详解】解:∵多项式不含二次项,∴,解得:,∴故答案为:.【点睛】本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.【变式2】(2023秋·全国·七年级专题练习)当m=时,关于x的多项式与多项式的和中不含项.【答案】【分析】先将两个多项式求和,根据和中不含项,即项的系数为0,据此求解即可.【详解】解:,∵关于x的多项式与多项式的和中不含项,∴,∴,故答案为:.【点睛】本题考查合并同类项,不含某一项,即合并后此项系数为0.一、单选题1.(2023秋·广西南宁·七年级统考期中)下列各组属于同类项的是(
)A.与 B.与 C.与 D.与【答案】C【分析】根据同类项的定义(所含字母相同,并且相同字母的指数也分别相等的项,叫同类项)判断即可.【详解】解:A、与不是同类项,故本选项错误;B、与不是同类项,故本选项错误;C、与是同类项,故本选项正确;D、与不是同类项,故本选项错误.故选:C.【点睛】本题考查了对同类项的定义的应用,注意:同类项是指:所含字母相同,并且相同字母的指数也分别相等的项.2.(2023秋·四川眉山·七年级统考期末)下列计算正确的是(
)A. B. C. D.【答案】D【分析】根据合并同类项的运算法则:字母和字母指数不变,只把系数相加减,逐个进行判断即可.【详解】解:A、,不是同类项,不能合并,故A不正确,不符合题意;B、,故B不正确,不符合题意;C、,故C不正确,不符合题意;D、,故D正确,符合题意;故选:D.【点睛】本题主要考查了合并同类项,解题的关键是掌握:合并同类项的运算法则:字母和字母指数不变,只把系数相加减.3.(2023春·河南周口·七年级统考期中)若与是同类项,则的值为(
)A.1 B.2 C.3 D.4【答案】C【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】解:由题意得:解得所以故选:C【点睛】本题考查了同类项的定义.熟记相关结论是解题关键.4.(2023秋·全国·七年级专题练习)下列变形中错误的是()A.B.C.D.【答案】B【分析】根据去括号和添括号法则,进行计算后,判断即可.【详解】解:A、,故正确;B、,故错误;C、,故正确;D、,故正确.故选:B.【点睛】本题考查去括号和添括号,熟练掌握去括号法则和添括号法则,是解题的关键.5.(2023春·浙江杭州·七年级校考期中)在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放留,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,若要知道图2中阴影部分的周长与图1中阴影部分的周长的差,只要测量图中哪条线段的长(
)
A. B. C. D.【答案】A【分析】根据平移的知识和周长的定义,列出算式周长差,再去括号,合并同类项即可求解.【详解】解:图1中阴影部分的周长,图2中阴影部分的周长,周长差.故若要知道周长差,只要测量图中线段的长.故选:A.【点睛】本题考查了整式的加减,周长的定义,关键是得到图2中阴影部分的周长与图1中阴影部分的周长.二、填空题6.(2023秋·吉林长春·七年级统考期末)计算:.【答案】【分析】运用合并同类项法则解题即.【详解】,故答案为:.【点睛】本题考查整式的加减,掌握合并同类项的法则是解题的关键.7.(2023秋·湖南永州·七年级统考期末)如果单项式与是同类项,则.【答案】1【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】解:由题意得:解得:故故答案为:1.【点睛】本题考查根据同类项的定义求字母指数中的参数的值.掌握同类项的定义是解题关键.8.(2023秋·广西南宁·七年级统考期中)若关于、的多项式中不含项,则.【答案】2【分析】先合并同类项,令含的项的系数为零,列式计算即可.【详解】解:∵多项式中不含项,∴,解得.故答案为:2.【点睛】本题考查了整式的加减中与字母无的关问题,正确合并同类项,令无关无关项的系数为零是解题的关键.9.(2023秋·湖北黄冈·七年级统考期末)若代数式的值是4,则的值是.【答案】【分析】根据已知得到,再将变形后代入计算,即可得到答案.【详解】解:,,故答案为:.【点睛】本题考查了整式加减法,代数式求值,利用整体代入的思想解决问题是解题关键.10.(2023春·河南郑州·七年级校考期中)一个底面是正方形的长方体,高为,底面正方形边长为.如果它的高不变,底面正方形边长增加了,那么它的体积增加了.【答案】【分析】根据长方体的体积的计算方法先求出边长未增加时的体积,再计算边长增加后的体积,运用整式的加减运算即可求解.【详解】解:底面是正方形的长方体,高为,底面正方形边长为,∴该长方体的体积为:,高不变,底面正方形边长增加了,则底面正方形的边长为,∴该长方体的体积为:,∴体积增加了,故答案为:.【点睛】本题主要考查用字母表示数、数量关系,整式的加减混合运算,掌握以上知识的灵活运用是解题的关键.三、解答题11.(2023秋·全国·七年级专题练习)化简:(1);(2).【答案】(1)(2)【分析】(1)先去括号,然后合并同类项即可;(2)根据整式加减运算法则,先去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了整式加减运算,解题的关键是熟练掌握整式加减运算法则,准确计算.12.(2023秋·全国·七年级专题练习)先化简,再求值,其中,.【答案】,【分析】去括号,合并同类项把所求式子化简,再将,的值代入计算即可.【详解】原式,当,时,原式.【点睛】本题考查整式化简求值,解题的关键是掌握去括号,合并同类项法则,把所求式子化简.13.(2023秋·新疆乌鲁木齐·七年级校考期末)化简求值(1)化简∶;(2)先化简,再求代数式的值∶,其中.【答案】(1)(2),﹣1【分析】(1)原式去括号合并即可得到结果(2)原式去括号合并得到最简结果,把与的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年输送带四色移印机(起头)项目投资价值分析报告
- 地产楼盘售卖合同范例
- 2024至2030年抽屉架项目投资价值分析报告
- 2024至2030年多叶平衡阀项目投资价值分析报告
- 专项工程合同范例
- 2024年知识产权许可合同技术内容与许可使用范围确定
- 2024年度汽车贷款保险理赔处理合同参考模板3篇
- 陕西旅游烹饪职业学院《Linux高级应用编程》2023-2024学年第一学期期末试卷
- 陕西理工大学《融媒体设计与制作》2023-2024学年第一学期期末试卷
- 陕西科技大学镐京学院《水产养殖学创新创业教育》2023-2024学年第一学期期末试卷
- 2025年1月“八省联考”考前猜想卷历史试题01 含解析
- 眼科练习卷含答案
- 山东省淄博市2023-2024学年高二上学期期末教学质量检测试题 数学 含解析
- 专题23 殖民地人民的反抗与资本主义制度的扩展(练习)
- 2024至2030年中国无甲醛多层板数据监测研究报告
- 算法设计与分析 课件 5.4.1-动态规划-0-1背包问题-问题描述和分析
- 分子生物学课件第一章医学分子生物学绪论
- 电工技能与实训(第4版)教学指南 高教版
- 转化学困生工作总结课件
- 新高考数学专题复习专题42圆锥曲线中的向量问题专题练习(学生版+解析)
- 高中语文 必修上册 第七单元 《我与地坛》
评论
0/150
提交评论