




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE15-甘肃省天水一中2024-2025学年高一数学上学期第三学段考试试题(含解析)一、选择题(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线的倾斜角为()A. B. C. D.【答案】D【解析】【分析】求出斜率,依据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.2.圆锥的轴截面是边长为的正三角形,则圆锥的表面积为()A. B. C. D.【答案】C【解析】【分析】依据圆锥轴截面的定义结合正三角形的性质,可得圆锥的底面半径、母线长,结合圆锥表面积公式,即可求出答案.【详解】圆锥的轴截面是边长为的正三角形,圆锥的底面半径,母线长;表面积故选C.【点睛】本题给出圆锥轴截面的形态,求圆锥的表面积,着重考查了等边三角形的性质和圆锥轴截面等学问,属于基础题.3.直线与平行,则的值等于()A.-1或3 B.1或3 C.-3 D.【答案】D【解析】试题分析:直线可化为,斜率为在y轴上截距两直线平行,则直线斜率存在,即直线可化为斜率为在y轴上截距为则由得即,解得故选D.考点:直线方程与直线平行间的关系.4.下列函数中,值域为偶函数是A. B. C. D.【答案】D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D5.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④【答案】A【解析】【分析】依据线面平行性质定理,结合线面垂直的定义,可得①是真命题;依据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不肯定平行,垂直于同一个平面和两个平面也不肯定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等学问,属于中档题.6.直线与圆交点的个数为A.2个 B.1个 C.0个 D.不确定【答案】A【解析】化为点斜式:,明显直线过定点,且定点在圆内∴直线与圆相交,故选A7.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)【答案】B【解析】试题分析:因为函数f(x)=2+3x在其定义域内是递增的,那么依据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B.考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,依据区间端点值的乘积小于零,得到函数的零点的区间.8.在三棱柱中,各棱长均相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.【答案】A【解析】【分析】先依据题意作出三棱柱,取的中点,连接,得到为所求的线面角,再设三棱柱的棱长为1,求出,即可得出结果.【详解】如图所示,取的中点,连接,则平面,故,为所求的线面角.设三棱柱的棱长为1,则,所以,所以,因此.故选A【点睛】本题主要考查直线与平面所成的角,依据题中条件作出线面角,干脆求解即可,属于常考题型.9.在空间直角坐标系中,已知.若分别是三棱锥在坐标平面上的正投影图形的面积,则()A. B.C. D.【答案】C【解析】【分析】依据顶点的坐标,分别向三个坐标平面正投影,找出正投影的图形形态、边长等,从而解出三个图形的面积,进而比较大小.【详解】解:三棱锥各顶点在平面上的正投影坐标为,,,,在平面上正投影的图形为直角三角形,其面积为;三棱锥各顶点在平面上的正投影坐标为,,,,在平面上正投影的图形为直角梯形,其面积为;三棱锥各顶点在平面上正投影坐标为,,,,在平面上正投影的图形为直角梯形,其面积为;所以得,故选C.【点睛】本题考查了点的正投影学问,点的正投影是将点向面作垂线,垂足便是该点正投影对应的点,这里其实是将正投影转化为我们熟识的线面垂直问题,如何作垂直,找出垂足是解决本问题的关键.10.已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则()A. B. C. D.【答案】D【解析】【分析】分别作出线线角、线面角以及二面角,再构造直角三角形,依据边的大小关系确定角的大小关系.【详解】设为正方形的中心,为中点,过作的平行线,交于,过作垂直于,连接、、,则垂直于底面,垂直于,因此从而因为,所以即,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.二、填空题(共4小题,每小题4分,共16分)11.如图所示,在正方体中,点是上底面内一动点,则三棱锥的正视图与侧视图的面积之比为_________.【答案】1∶1【解析】【分析】由题意确定点在正视图和侧视图中的位置,可知正视图和侧视图的底边长和高,即可求出面积比.【详解】由题意知,点在正视图中的射影在上,所以正视图是以为底边,为高的三角形,同理,点在侧视图中的射影在上,所以侧视图是以为底边,为高的三角形,因为为正方体,所以,所以三棱锥的正视图与侧视图的面积比为.故答案为:【点睛】本题主要考查三视图和直观图形的关系,考查学生空间想象实力,属于基础题.12.设,,,则,,的大小关系是________.【答案】【解析】【分析】利用指数函数和幂函数的单调性即可推断三个式子的大小.【详解】对和,因为函数为减函数,,所以,即,对和,因为函数在上为增函数,,所以,即,所以,,的大小关系是.故答案为:【点睛】本题主要考查指数函数和幂函数的单调性,属于基础题.13.已知点在上,求的最小值________.【答案】【解析】【分析】利用的几何意义,画出图形,利用点到直线距离即可求出答案.【详解】设,则的几何意义是圆上的点与原点的斜率,由图象可知,当直线与圆在其次象限相切时,直线斜率最小,此时,则圆心到直线的距离,解得.故答案为:【点睛】本题主要考查直线和圆位置关系,点到直线距离公式,考查学生数形结合的实力,属于基础题.14.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为______.【答案】【解析】【分析】先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,,设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些学问的理解驾驭水平,属于中档题.三、解答题(共4小题,44分,请在答题卡上写清必要的解题过程)15.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.【答案】(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】【分析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【点睛】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些学问的理解驾驭水平.16.如图,在直三棱柱中,已知,.设的中点,.求证:(1)平面;(2).【答案】(1)见解析(2)见解析【解析】试题分析:(1)要证线面平行,只需找线线平行,因为D,E为中点,利用中位线即可证明;(2)只需证明平面即可,明显可证,因此原命题得证.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:两条直线的垂直,一般须要用到线面垂直,先证明其中一条直线是另外一条直线所在平面的垂线,在此证明过程中,一般还要再次用到线面垂直的判定或性质,从而得到线线垂直.17.我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biēnào].某学校科学小组为了节约材料,拟依托校内内垂直的两面墙和地面搭建一个堑堵形的封闭的试验室,是边长为2的正方形.(1)若,在上,四面体是否为鳖臑,若是,写出其每个面直角:若不是,请说明理由;(2)当阳马的体积最大时,求点到平面的距离.【答案】(1)是;四个直角分别为、、、;(2)【解析】【分析】(1)由题意可知,,,都是直角三角形,再证明面,得到,可得直角三角形,可以得到四面体是为鳖臑,再写出四个直角即可;(2)由和,求出,此时,即此时阳马的体积最大,然后利用等体积法求出点到平面的距离即可.【详解】(1)如图,连接和,由题意可知,,都是直角三角形,面,在平面内,∴,又∵,且,∴面又在面内,故,∴直角三角形.∴四面体四个面都是直角三角形,故四面体是鳖臑.在中,是直角,在中,是直角,在中,是直角,在中,是直角.(2)在中,由,得,(取得等号)由题意可知,面∴阳马的体积:,(取得等号)所以以为顶点,以底面的三棱锥体积最大值为:在中,,设到面距离为,则以为顶点,以底面时,三棱锥体积:,即,解得:,即点到面距离为.【点睛】本题主要考查线面垂直的应用和等体积法求点到平面的距离,考查学生数形结合和计算实力,属于中档题.18.已知圆,直线,点在直线上,过点作圆的切线、,切点为、.(1)若,求点坐标;(2)若点的坐标为,过作直线与圆交于、两点,当时,求直线的方程;(3)求证:经过、、三点的圆与圆的公共弦必过定点,并求出定点的坐标.【答案】(1)或;(2)或;(3)【解析】【详解】试题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 6《景阳冈》教学设计2024-2025学年统编版语文五年级下册
- 5一个豆荚里的五粒豆 第一课时 教学设计2024-2025学年语文四年级上册统编版
- 13 桥 教学设计-2024-2025学年统编版语文六年级上册
- Unit9Section B(2a-2c)教学设计2023-2024学年人教版七年级英语下册
- 9《木兰诗》(教学设计)-2024-2025学年七年级语文下册同步教学设计(统编版2024)
- 网络销售员工培训
- 2024学年九年级物理上册 第8章 电磁相互作用及应用 8.3电话和传感器教学设计 (新版)教科版
- 生鲜仓库安全培训
- 2024秋七年级数学上册 第二章 有理数2.9有理数的乘法 1有理数的乘法法则教学设计(新版)华东师大版
- 1《北京的春节》教学设计2023-2024学年统编版语文六年级下册
- 2025陕西核工业工程勘察院有限公司招聘(21人)笔试参考题库附带答案详解
- 2025年山东、湖北部分重点中学高中毕业班第二次模拟考试数学试题含解析
- 2025-2030中国集装箱化和模块化数据中心行业市场发展趋势与前景展望战略分析研究报告
- 2025-2030中国防腐新材料行业市场深度调研及发展策略与投资前景预测研究报告
- 2025年超高功率大吨位电弧炉项目发展计划
- 2025年护工考试试题及答案
- 2024年四川省高等职业教育单独考试招生文化素质考试中职英语试卷
- 全国第9个近视防控月活动总结
- 人教A版必修第二册高一(下)数学6.3.2-6.3.3平面向量正交分解及坐标表示【课件】
- 2025至2030年中国快速换模系统数据监测研究报告
- 航空业劳动力安全保障措施
评论
0/150
提交评论