版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
答案第=page11页,共=sectionpages22页北师大版九年级上册数学期末考试试题一、单选题1.下列命题是真命题的是(
)A.四个角都相等的四边形是菱形B.四条边都相等的四边形是正方形C.平行四边形、菱形、矩形都既是轴对称图形,又是中心对称图形D.顺次连接菱形各边中点得到的四边形是矩形2.如图,该几何体的俯视图是(
)A.B.C.D.3.如图,直线AB//CD//EF,若BD:DF=3:4,AC=3.6,则AE的长为()A.4.8B.6.6C.7.6D.8.44.已知在Rt△ABC中,∠C=90°,若sinA=,则cosA等于()A.B.C.D.15.若关于x的一元二次方程有两个实数根,则实数k的取值范围是()A.B.C.且D.且6.一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是(
)A.B.C.D.7.已知正比例函数y1=kx的图象与反比例函数y2=的图象相交于点A(2,4),则下列说法正确的是()A.正比例函数y1与反比例函数y2都随x的增大而增大B.两个函数图象的另一交点坐标为(2,﹣4)C.当x<﹣2或0<x<2时,y1<y2D.反比例函数y2的解析式是y2=﹣8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cosB=,E为边AC的中点,则cos∠ADE的值为(
)A.B.C.D.9.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.1410.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,AD=6,则BE的长为()A.B.C.3D.3.511.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为(
)A.B.4C.D.212.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是(
)A.B.C.D.二、填空题13.方程x2=2x的解是_______.14.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.15.小明要把一篇文章录入电脑,所需时间与录入文字的速度(字)之间的反比例函数关系如图所示,如果小明要在内完成录入任务,则小明录入文字的速度至少为______字.16.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为___.17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30角时,已知两次测量的影长相差8米,则树高AB为多少?___.(结果保留根号)18.如图,在平面直角坐标系中,△ABC和△A1B1C1是以坐标原点O为位似中心的位似图形,且点B(5,1),B1(10,2),若△ABC的面积为m,则△A1B1C1的面积为_____.19.如图,点,在反比例函数的图象上,点,在反比例函数的图像上,轴,已知点,的横坐标分别为2,4,与的面积之和为3,则的值为_______.三、解答题20.解方程:3x2+5(2x+1)=0.21.如图,CD是线段AB的垂直平分线,M是AC延长线上一点.(1)用直尺和圆规:作∠BCM的角平分线CN,过点B作CN的垂线,垂足为E;(保留作图痕迹,不要求写作法)(2)求证:四边形BECD是矩形.22.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?23.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米,(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54米,那么小路的宽度是多少米?24.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:CF=AE;(2)当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.25.如图,一次函数的图象交反比例函数的图象于、两点,交x轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:在第四象限内,当一次函数的值小于反比例函数的值时,x的取值范围是什么?(3)若点P在x轴上,点Q在坐标平内面,当以A、B、P、Q为顶点的四边形是矩形时,求出点P的坐标.26.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.27.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.参考答案1.D【分析】根据正方形、菱形、矩形、平行四边形的判定和性质一一判断即可【详解】解:A、若四个角都相等,则这四个角都为直角,有三个角是直角的四边形是矩形,故A选项为假命题,不符合题意;B、四条边都相等的四边形是菱形,故B选项为假命题,不符合题意;C、平行四边形是中心对称图形,但不是轴对称图形,菱形和矩形既是轴对称图形,又是中心对称图形,故C选项为假命题,不符合题意;D、顺次连接菱形各边中点得到的四边形是矩形,故D选项为真命题,符合题意,故选:D.【点睛】本题考查的是命题的真假判断以及正方形、菱形、矩形、平行四边形的判定和性质等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.A【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.3.D【分析】根据平行线分线段成比例定理得到比例式,然后带入已知条件即可得到CE的长,最后求得AE的长.【详解】解:∵AB//CD//EF,BD:DF=3:4,∴,∵AC=3.6,∴,∴.故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.A【分析】利用60°的三角函数值解决问题.【详解】解:∵∠C=90°,sinA,∴∠A=60°,∴cosA=cos60°.故选:A.【点睛】本题考查了特殊角的三角函数值,记住特殊角的三角函数值是解决此类问题的关键.5.C【分析】根据根的判别式是非负数,且二次项系数不等于0,列不等式求解即可.【详解】解:由题意得,且解得且.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式与根的关系求参数,熟练掌握根的判别式与根的关系是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.6.D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是=;故选:D.【点睛】本题考查了列表法与树状图法以及概率公式,解决本题的关键是画出树状图.7.C【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【详解】∵正比例函数的图象与反比例函数的图象相交于点,,,解得:,,∴正比例函数,反比例函数,,解得:或,∴两个函数图象的另一个交点为,在正比例函数中,,y随x的增大而增大,在反比例函数中,,,在每个象限内y随x的增大而减小,∵当x<﹣2或0<x<2时,y1<y2,∴A、B、D选项说法错误;选项C说法正确.故选:C.【点睛】本题考查反比例函数与正比例函数,掌握函数的图像与性质是解题的关键.8.D【分析】根据直角三角形勾股定理及余弦函数可得,再由勾股定理可得,根据直角三角形中斜边上中线等于斜边的一半可得,依据等边对等角可得,由此计算角的余弦即可.【详解】解:∵于D,,,∴,,∵,∴,∵E为AC中点,∴,∴,∴,故选:D.【点睛】题目主要考查勾股定理、锐角三角函数解三角形,等腰三角形的判定和性质,理解题意,综合运用解三角形方法是解题关键.9.C【分析】先利用平行四边形的性质得,AD=BC,由可判断△AEF∽△CBF,根据相似三角形的性质得,然后根据三角形面积公式得,,则.【详解】∵平行四边形ABCD∴,AD=BC∵E为边AD的中点∴BC=2AE∵∴∠EAC=∠BCA又∵∠EFA=∠BFC∴△AEF∽△CBF如图,过点F作FH⊥AD于点H,FG⊥BC于点G,则,∴,∵△AEF的面积为2∴故选C.【点睛】本题考查了相似三角形的性质,属于同步基础题.10.A【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【详解】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=AD=6,设BE=x,则EG=AE=6﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(6﹣x)2=(x)2+(4﹣x)2,解得,x=,∴BE=,故选:A.【点睛】此题考查了菱形的性质,折叠的性质,等边三角形的判定及性质,勾股定理,熟记各知识点并综合运用是解题的关键.11.A【详解】∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=在Rt△ABE中,AE=故可得AC=2AE=.故选A.12.D【详解】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.13.x1=0,x2=2【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【详解】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.14.42【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:,解得:x=42.故答案为:42.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.15.【分析】先利用待定系数法求出反比例函数的解析式,再求出时,的值,然后根据反比例函数的增减性即可得.【详解】解:设反比例函数的解析式为,将点代入得:,则反比例函数的解析式为,当时,,反比例函数的在内,随的增大而减小,如果小明要在内完成录入任务,则小明录入文字的速度至少为字,故答案为:.【点睛】本题考查了反比例函数的图象与性质,熟练掌握待定系数法是解题关键.16.4【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=BD,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=AC•BD=×12•BD=48,∴BD=8,∴OH=BD=4,故答案为:4.【点睛】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,解题的关键是根据直角三角形斜边上的中线性质求得OH=BD.17.米【分析】设,利用正切的定义以及特殊角的正切值,表示出和,然后求解即可.【详解】解:设米在中,,则在中,,则,即,解得即米故答案为米【点睛】本题考查了解直角三角形的实际应用,涉及正切的定义,解题的关键是掌握正切三角函数的定义以及特殊角的正切值.18.【分析】根据面积比等于位似比的平方即可求得.【详解】B(5,1),B1(10,2)则,,,△ABC的面积为m,则△A1B1C1的面积为.故答案为.【点睛】本题考查了位似图形的性质,位似图形上任意一对对应点到位似中心的距离之比等于相似比,位似图形面积的比等于相似比的平方,掌握位似图形的性质是解题的关键.19.5【分析】根据题意求得四边的坐标,再根据与的面积之和为3,列方程求解即可.【详解】解:轴,点,的横坐标分别为2,4,点,的横坐标分别为2,4又∵点,在反比例函数的图象上,点,在反比例函数的图像上∴,,,∴,由图形可得,,由题意可得:,即解得故答案为:【点睛】此题考查了反比例函数的性质,解题的关键是掌握反比例函数的有关性质,根据题意正确列出方程.20.,【分析】方程整理后,求出b2-4ac的值,再代入公式求出解即可.【详解】解:3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∴a=3,b=10,c=5,∴,∴,则原方程的解为,.21.(1)见解析(2)见解析【分析】(1)尺规作∠BCM的角平分线CN的作法:先以点C为圆心,某一长度为半径作圆,交射线CM、CN于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,在角的内部产生交点,连接交点与点C,即为∠BCM的角平分线CN;尺规作过点B作CN的垂线段BE:先以点B为圆心,某一长度为半径作圆,交CN于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,交CN上方于一点,连接该点与点B,与CN交点即为点E.(2)由CD是线段AB的垂直平分线,可得AC=BC,∠DCB=∠ACB,又因为CN平分∠BCM,易证∠DCN=(∠ACB+∠BCM)=90°,再结合CD⊥AB,BE⊥CN,即可证明四边形BECD是矩形.(1)如图所示,CN,BE为所求(2)证明:∵CD是AB的垂直平分线∴CD⊥BD,AD=BD∴∠CDB=90°,AC=BC∴∠DCB=∠ACB∵CN平分∠BCM∴∠BCN=∠BCM∵∠ACB+∠BCM=180°∴∠DCN=∠DCB+∠BCN=(∠ACB+∠BCM)=90°∵BE⊥CN∴∠BEC=∠DCN=∠CDB=90°∴四边形BECD是矩形.【点睛】本题主要考查了尺规作图、矩形的判定,要求掌握5类基本尺规作图:作一条线段等于已知线段、作一个角等于已知角、作已知角的角平分线、作已知线段的垂直平分线、过一点作已知直线的垂线.22.(1)见解析;(2)小明获胜的概率大,见解析【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有4个(包括m=n=2,和m=n=3两种情况),m,n都不是方程x2﹣5x+6=0的解的结果有2个,小明获胜的概率为,小利获胜的概率为,∴小明获胜的概率大.【点睛】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式,画出树状图是解题的关键.23.(1)长为10米,宽为8米;(2)小路的宽为1米.【分析】(1)设与墙垂直的一面为x米,然后可得另两面则为(26﹣2x+2)米,然后利用其面积为80,列出方程求解即可;(2)设小路的宽为a米,利用去掉小路的面积为54平米列出方程求解即可得到答案.【详解】解:(1)设与墙垂直的一面为x米,另一面则为(26﹣2x+2)米根据题意得:整理得:解得或,当x=4时,28﹣2x=20>12,不符合题意,舍去当x=10时,28﹣5x=8<12,符合题意∴长为10米,宽为8米.(2)设宽为a米,根据题意得:(8﹣2a)(10﹣a)=54,a2﹣14a+13=0,解得:a=13>10(舍去),a=1,答:小路的宽为1米.【点睛】此题考查了一元二次方程与几何图形面积的应用,理解题意找到题中的等量关系是解题的关键.24.(1)见解析;(2)四边形AFCE是菱形,理由见解析【分析】(1)由平行四边形的性质得AD=BC,AD//BC,则∠ADE=∠CBF,再由SAS证△ADE≌△CBF即可求解;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADB=∠CBD,∵∠ADB+∠ADE=180°,∠CBD+∠CBF=180°∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴CF=AE;(2)四边形AFCE是菱形,理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD//BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的性质与判定判定、全等三角形的性质与判定,角平分线的定义,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1),;(2)当4<x<16时,(3)(0,0),(15,0),P或.【分析】(1)将点A(4,﹣8),B(m,﹣2)代入反比例函数y(x>0)中,可求m、a;再将点A(4,﹣8),B(m,﹣2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值小于反比例函数的值时x的范围;(3)根据矩形形的性质,分类讨论,即可得出结论.【详解】解:(1)∵反比例函数y(x>0)的图象于A(4,﹣8),∴k=4×(﹣8)=﹣32.∵双曲线y过点B(m,﹣2),∴m=16.由直线y=kx+b过点A,B得:,解得,,∴反比例函数关系式为,一次函数关系式为.(2)观察图象可知,当4<x<16时,一次函数的值小于反比例函数的值.(3)在直线yx﹣10中,令y=0,则x=20,∴C(20,0),∴OC=20,AC8,BC2,AO4,∴∴△OAC为直角三角形∴OA⊥AB四边形是矩形时分三种情况①当PA⊥AB时∵OA⊥AB∴P点以O点重合∴P点坐标为(0,0)②当PB⊥AB时设P(m,0),则PC=20﹣m,∵∠PBC=∠OAC=90°,∠PCB=∠OCA∴△BCP∽△ACO,∴,即,,∴m=15,此时P(15,0),③当∠APB=90°时设P(m,0),作AM⊥OC,BN⊥OC∴∠AMP=∠BNP=90°∵,∴AM=8,BN=2,PM=m-4,NP=16-m∵∠APB=90°∴∠APM+∠BPN=90°∵∠MAP+∠APM=90°∴∠MAP=∠BPN∴△APM∽△PBN,∴,即,解得:此时P或综上,四边形是矩形时P点的坐标为(0,0),(15,0),P或.【点睛】本题考查了用待定系数法求函数解析式以及反比例函数和一次函数的交点问题,这里体现了数形结合的思想.26.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【分析】(1)过F作FH⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《心理治疗的方法》课件
- 法治宣传主题团日活动
- 瘢痕治疗后护理操作
- 仪表阀门图例符号
- 消费者调研分析报告(共6篇)
- 山东事业单位监督管理信息系统
- 干部培训民族团结教育
- 《种推销致胜法宝》课件
- 思想实践课活动
- 肿瘤的预防与治疗
- 东营港加油、LNG加气站工程环评报告表
- 数字化影视制作流程策划书
- 《物联网单片机应用与开发》课程标准(含课程思政)
- 电源适配器方案
- 人民银行征信报告样板
- 全国民用建筑工程设计技术措施节能专篇-暖通空调动力
- 中国急诊重症肺炎临床实践专家共识课件
- 辽宁省2023年高中学业水平合格性考试语文试卷真题(答案详解)
- 投资管理的项目投资和项目管理
- 2024年度医院心血管内科护士长述职报告课件
- 危重症患儿病情观察与护理
评论
0/150
提交评论