版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
16.使学生会列一元一次方程解决一些简单的应用题;会判断一个数是不是某通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的会列一元一次方程解决一些简单的应用题。弄清题意,找出“相等关系”分析、讲授、建模电子白板、多媒体课件小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得我们再来看下面一个例子:问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?教学过程问:你能解决这个问题吗?有哪些方法?教学过程(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师44x+64=328(1)解这个方程,就能得到所求的结果。问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)岁,几年以后你们的年龄是我年龄的三分之一?”21年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。1通过分析,列出方程:13+x45+x2)3这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。同学们动手试一试,大家发现了什么问题?同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?这正是我们本章要解决的问题。三、巩固练习2.补充练习:检验下列各括号内的数是不是它前面方程的解。=-四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的3通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。让学生在观察、思考的基础上归纳出方程的两种变形使学生体会到一元一次方程作为实际问题的数学模型的作用。由具体实例抽象出方程的两种变形。观察、思考分析、讲授、建模电子白板、多媒体课件上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。二、新授让我们先做个实验,拿出预先准备好的天平和若干砝码。测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?教学过程让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。教学过程问:图6.2.1右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)让同学们看图6.2.2。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?方程两边都加上或都减去同一个数或同一个整式,方程的解不变。让学生观察(3),由学生自己得出方程的第二个变形。即方程两边都乘以或除以同一个不为零的数,方程的解不变:通过对方程进行适当的变形.可以求得方程的解。例1.解下列方程x=12即=-4现了这些方程的变形。有什么共同特点?这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。例2.解下列方程x=这里的变形通常称为“将未知数的系数化为1”。以上两个例题都是对方程进行适当的变形,得到x=a的形式。练习中的第3题,即第2页中的方程①先让学生讨论、交流。鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。三、巩固练习教科书第8页,练习本节课我们通过天平实验,得出方程的两种变形:1.把方程两边都加上或减去同一个数或整式方程的解不变。2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。2.掌握含有括号的一元一次方程的解法。让学生回顾等式的变形,类比学习方程解法自主学习感受成功的过程中激发数学的兴趣解含有括号的一元一次方程的解法。括号前面是负号时,去括号时忘记变号。观察、类比、实践52.去括号法则是什么?“移项”要注意什么?二、新授一元一次方程的概念前面我们遇到的一些方程,例如44x+64=3283+x=(45+x)y-5=2y+l问:大家观察这些方程,它们有什么共同特征?只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫例1.判断下列哪些是一元一次方程x=3x-2x-3l5x2-3x+1=02x+y=l-3y=5下面我们再一起来解几个一元一次方程。方程(1)该怎样解?由学生独立探索解法,并互相交流此方程既可以先去括号求解,也可以看作关于(x-1)的一元一次方程进行求解。第(2)题可由学生自己完成后讲评,讲评时,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。补充例题:解方程3x-[3(x+1)-(1+4)]=l方程中有多重括号,你会解这个方程吗?说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。三、巩固练习本节课我们学习了一元一次方程的概念,并学习了含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。6使学生掌握去分母解方程的方法,并从中体会到转化的思想。对于求解较复杂的方程,要注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯让学生回顾等式的变形,类比学习方程解法体会到转化的思想,自觉反思求解的过程和自觉检验方程的解是否正确的掌握去分母解方程的方法求各分母的最小公倍数,去分母时,有时要添括号。观察、类比、实践电子白板、多媒体课件2.求几个数的最小公倍数的方法。二、新授-=-=1分析:如何解这个方程呢?此方程可改写成=1=1所以可以去括号解这个方程,先让学生自己解。同学们,想一想还有其他方法吗?能否把方程变形成没有分母的一元一次方程,这样,我们就可以用已学过的方法解它了。解法二;把方程两边都乘以6,去分母。比较两种解法,可知解法二简便。想一想,解一元一次方程有哪些步骤?先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。3x3=-补充例=-问:如果先去分母,方程两边应同乘以一个什么数?三、巩固练习(练习第1题是辨析题,引导学生进行分析、讨论,帮助学生在实践中自我认识和纠正解题中的错误)1.解一元一次方程有哪些步骤?2.同学们要灵活运用这些解法步骤,掌握移项要变号,去分母时,方程两边每一项都要另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。7理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用弄清应用题题意列出方程。弄清应用题题意列出方程。观察、分析、类比、建模电子白板、多媒体课件8教学过程教学过程例1、如图6.2.4(课本第10页)天平的两个盘内分别盛有51克,45克食盐,盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。分析:设应从A盘内拿出盐x,可列表帮助分析。等量关系;A盘现有盐=B盘现有盐完成后,可让学生反思,检验所求出的解是否合理。(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?引导学生弄清题意,疏理已知量和未知量:1.题目中有哪些已知量?(1)参加搬砖的初一同学和其他年级同学共65名。(2)初一同学每人搬6块,其他年级同学每人搬82.求什么?初一同学有多少人参加搬砖?3.等量关系是什么?初一同学搬砖的块数十其他年级同学的搬砖数=400如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程6x+8(65-x)=400也可以按照教科书上的列表法分析三、巩固练习第l题:可引导学生画线图分析等量关系是:AC十CB=400若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再由等量关系就可列出方6(65-x)+8x=400本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。9让学生通过独立思考,积极探索,从而发现;围成的长方形的长和宽在发生变化,但在围的过程中,长方形的周长不变,由此便可建立“等量关系”且长方形的长与宽越接近时,面积越大。通过问题3的教学,让学生初步体会数形结合思想的作用。让学生通过独立思考,积极探索,从而发现让学生初步体会数形结合思想的作用。通过分析图形问题中的数量关系,建立方程解决问题。找出“等量关系”列出方程。观察、分析、类比、建模电子白板、多媒体课件1.列一元一次方程解应用题的步骤是什么?2.长方形的周长公式、面积公式。二、新授(1)使长方形的宽是长的专,求这个长方形的长和宽。(2)使长方形的宽比长少4厘米,求这个长方形的面积。(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?让学生独立探索解法,并互相交流。第(1)小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系。教学过程分析:由题意知,长方形的周长始终不变,长与宽的和为60÷2=30(厘米),解决这个问题时,要抓住这个等量关系。教学过程第(2)小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。长方形的面积=18×12=216(平方厘米)长方形的面积=221(平方厘米)问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。通过计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大。实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。三、巩固练习第l题,组织学生讨论,寻找本题的“等量关系”。用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么?通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比较这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么?等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。从而列出进一步体会到运用方程解决问题的关键是抓住学们要联系实际,积极探索,找出等量关系。1知识与技能决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程体会方程是刻画现实世界的有效数学模型。教学重点探索这些实际问题中的等量关系,由此等量关系列出方程。教学难点找出能表示整个题意的等量关系。教学方法观察、分析、类比、建模1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关知识。利润=售价-成本=商品利润率二、新授在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税。今天我们来探索一般的储蓄问题。问题2、小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%根据等量关系,得2.43%x·2-2.43%x×2×2048.6问,扣除利息的20%,那么实际得到的利息是多少?你能否列出较简单的方程?扣除利息的20%,实际得到利息的80%,因此可得解方程,得x=1250例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?大家想一想这15元的利润是怎么来的?标价的80%(即售价)-成本=15若设这种服装每件的成本是x元,那么解方程,得x=125三、巩固练习本节课我们利用一元一次方程解决有关储蓄、商品利润等实际问题,当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。1.使学生理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。2.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。通过对“工程问题”的分析进一步用代数方法解决实际问题使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验工程中的工作量、工作的效率和工作时间的关系。把全部工作量看作“1”。观察、分析、类比、建模电子白板、多媒体课件1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少?2.一件工作,如果甲单独做a小时完成,那么甲独做1小时,完成全部工作量的多少?3.工作量、工作效率、工作时间之间有怎样的关系?二、新授1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?小刘提出什么问已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。小刘提出的问题是:两人合作需要几天完成?2.怎样用列方程解决这个问题?本题中的等量关系是什么?[等量关系是:师傅做的工作量+徒弟做的工作量=1]教学过程若设两人合作需要x天完成,那么甲、乙分别做了几天?甲、乙的工作效率是多少?教学过程3.你还能提出什么问题?试试看,并解答这些问题。让学生充分思考,大胆提出问题,互相交流,对于合理的问题,让大家共同解答,对于不合理的问题,让大家探讨为什么不合理?应改为怎样提?4.李老师把两位同学的问题,合起来后,已知条件增加了什么?求什么?[先要求出师傅与徒弟各完成的工作量是多少?]天,根据等量关系,列方程解方程得x=2所以他们两人完成的工作量相同,因此每人各得225元。三、巩固练习一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。例如(1)剩下的乙独做要几小时完成?(2)剩下的由甲、乙合作,还需多少小时完成?(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即工作量=工作效率×工作时间工作效率=工作量/工作时间工作时间=工作量/工作效率2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透“转化”的思想方法。灵活运用一元一次方程的解法求一元一次方程的解,进一步渗透“转化”培养学生快速准确的计算能力,渗透“转化”的思想方法。一元一次方程的解法。灵活运用一元一次方程的解法。观察、分析、类比、建模电子白板、多媒体课件定义:只含有一个未知数,且含未知数的项的次数1的整式方程。一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为l,把一个一元一次方程“转化”成x=a“的形式。二、练习1.下列各式哪些是一元一次方程。学生认真审题,注意方程的结构特点。选用简便方法。第(1)小题,可以先去括号,也可以先去分母,还可以把x一3看成一个整体,解关于x一教学过程3的方程。方法—:去括号,得x—3=2—x+3移项,得x+x=2+3+3教学过程合并同类项,得x=5方法二:去分母,得x一3=4一x+3(强调等号右边的“2”也要乘以2,而且不要弄错符号)移项,得x+x=4+3十3合并同类项,得2x=10第(2)小题有双重括号,一般情况是先去小括号,再去中括号,但本题结构特殊,应先去中括号简便,注意去中括号时,要把小括号看作一个整体,中括号里先看成2项。解:去中括号,得(x一3)一×=1一x移项,得x+x=1+3+合并同类项,得x=也可以让学生先去小括号,让他们对两种解法进行比较。去括号,得31—5x—11=6+4x一8合并同类项,得一6x=9系数化为l,得x=一(2)先利用分数的基本性质,将分母化为整数。原方程化为一x=x十l去分母,得2(10—5x)一4x=90x+6合并同类项,得一104x=一14系数化为1,得x=点拨:“将分母化为整数”与“去分母”的区别。本题去分母之前,也可以先将方程右边的||分析:(1)把5x一2看作一个数a,那么方程可看作|a3,根据绝对值的意义得a=3(2)把看作一个数,或把||化成||解方程5x一2=一3得x=-所以原方程解为:x=1或x=-(2)根据绝对值的意义,原方程可化为解方程1得x=2所以原方程的解为x=一1或x=2,|∴|a一30且(b+1)2=0把a=3,b=一1分别代人代数式,b-a+m根据题意,得一(-3十m)=l去括号得+3一m=1即一m=l解:关于;的方程4x一2m=3x+1,得x=2m+1解关于x的方程x=2x一3m得x=∵根据题意,得2m+l=2×3m解之,得m=三、小结在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,解过程和检验方程的解是否正确。使学生进一步能以一元一次方程为工具解决一些简单的实际问题,能借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题的能力。从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系运用方程解决实际问题。寻找等量关系,间接设元。观察、分析、类比、建模电子白板、多媒体课件列一元一次方程解应用题的步骤。二、新授例1.为了准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下(1)直接存一个6年期,年利率是2.88%;(2)先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是2.7%。你认为哪种储蓄方式开始存人的本金比较少?分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出这两种储蓄方式开始存人多少元,然后再比较。如果按照第一种储蓄方式,那么列方程:教学过程x×(1十2.88%×6)=5000解得x≈4263(元)教学过程可鼓励学生自己填上表,适当时对学生加以引导,对有困难的学生复习:本利和=本金十利息:本金X利率X期数等量关系是:第二个3午后本利和=5000所以列方程1.081x·(1十2.7%×3)=5000解得x≈4279这就是说,大约4280元,3年期满后将本利和再存一个3年期,6年后本利和达到5000因此第一种储蓄方式<即直接存一个6年期)开始存人的本金少。国人均占有量的,世界人均占有量的,问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?(2)北京市一年漏掉的水相当于新建一个自来水厂,据不完全统计,全市至少有6×l05个水龙头,2×l05个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a立方米水,一个漏水马桶,一个月漏掉b立方米水,那么一个月造成的水流失量至少有多少立方米?(用(3)水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米?三、巩固练习1.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存入了多少元?2.一收割机收割一块麦田,上午收了麦田的25%,下午收割了剩下麦田的20%,结果还剩6公顷麦田未收割,这块麦田一共有多少公顷?3.儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿子年龄的4倍吗?本节课我们复习了利用一元一次方程解决实际问题,方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找到“等量关系”,在寻找等量关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。教科书第21页复习题A组第3、4、5、6、7。B组11、12、13第七章二元一次方程组1.使学生了解二元一次方程,二元一次方程组的概念。2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。了解二元一次方程。二元一次方程组以及二元一次方程组的解的含义,会检验一对数是否是某个二元一次方程组的解。了解二元一次方程组的解的含义。观察、分析、类比、建模电子白板、多媒体课件教学过程教学过程这些场次的得分一共是17分,也就是说,两个未知数x、yx+y=7①又满足方程②,即3×5十2=1721.使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元——次方程组为一元一次方程。3.通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。通过探索,逐步发现解方程组的基本思想是“消元”用代入法把二元一次方程组转化为一元一次方程。用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简电子白板、多媒体课件教学过程教学过程1.什么叫二元一次方程,二元一次方程组,二元一次方程组的解?二、新授回顾上一节课的问题2。在问题2中,如果设应拆除旧校舍xm2,建新校舍ym2,那么根据题意可列出方程组。y-x=20000×30%①怎样求这个二元一次方程组的解呢?方程②表明,可以把y看作4x,因此,方程①中的y也可以看着4x,即将②代人①(得到一元一次方程,实际上此方程就是设应拆除旧校舍xm2,所列的一元一次方程)。二元一次方程组吗?让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总1.选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。2.把③代人另一个方程,得一元一次方程。3.解这个一元一次方程,得一个未知数的值。4.把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法。三、巩固练习1.解二元一次方程组的思路。2.掌握代入消元法解二元一次方程组的一般步骤。1.使学生进一步理解代人消元法的基本思想和代入法解题的一般步骤。2.让学生在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法,将一个未知数表示另一个未知数。在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法熟练地用代人法解一般形式的二元一次方程组。准确地把二元一次方程组转化为一元一次方程。观察、分析、类比电子白板、多媒体课件教学过程教学过程1.方程组2x+5y=-2如何求解?关键是什么?解题步骤是什么?x=8-3y2.把方程2x-7y=8(1)写成用含x的代数式表示y的形式。(2二、新授2x-7y=8①例:解方程3x-8y-10=0②分析:这两个方程中未知数的系数都不是l,那么如何求解呢?消哪一个未知数呢?如果将①写成用一个未知数来表示另一个未知数,那么用x表示y,还是用y表示x好呢?(让学生自己探索、归纳)因为x的系数为正数,且系数也较小,所以应用y来表示x较好。尝试解答。教师板书解方程的过程。这里是消去x,得关于y的一元二次方程,能否消去y呢?让学生试一试,然后通过比较,使学生明白本题消x较简单。三、巩固练习教科书第30页,练习1、2(12)对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是:2.若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代人没有变形的方程中去。这样就把二元一次方程组转化为对运算的结果养成检验的习惯。1.使学生进一步理解解方程组的消元思想。2.使学生了解加减法是消元法的又一种基本方法,并使他们会用加减法解一些简单的二元一次方程组。的表示方法,进一步理解解方程组的消元思想在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法用加减法解二元一次方程组。两个方程相减消元时对被减的方程各项符号要做变号处理。观察、分析、类比电子白板、多媒体课件1.解二元一次方程组的基本思想是什么?2.用代人法解方程组3x+5y=5①3x-4y=23②学生口述解题过程,教师板书。二、新授用代入法解二元一次方程的基本思想是消元,只有消去一个未知数,才能把二元转化为熟悉的一元方程求解,为了消元,除了代入法还有其他的方法吗?(让学生主动探求解法,适当时教师可作以下引导)观察方程组在这个方程组中,未知数x的系数有什么特点?怎样才能把这个未知数消去?你的根据是什么?教学过程这两个方程中未知数x的系数相同,都是3,只要把这两个方程的左边与左边相减、右边相当于把方程①的两边分别减去两个相等的整式。教学过程为了避免符号上的错误(3x+5y)-(3x-4y)=5-23板书示范时可以如下:3x+5y-3x+4y=-18解:把①-②得9y18把y=-2代入①,得3x+5×(-2)=5解得x=5∴x=5这结果与用代入法解的结果一样y=-2也可以通过检验从上面的解答过程中,你发现了二元一次方程组的新解法吗?让学生自己概括一下。例2.解方程组3x+7y=9①4x-7y=5②怎样解这个方程组呢?用什么方法消去一个未知数?先消哪个未知数比较方便?①+②,得7x=14[两个方程中,未知数y的系数是互为相反数,而互为相反数的和为零,所以应把方程将x=2代入①,得①的两边分别加上方程②的两边]6+7y=9y=y=以上两个例子是通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。三、巩固练习今天我们又学习了解二元一次方程组的另一种方法――加减法,它是通过把两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程。请同学们归纳一下,使学生了解用加减法解二元一次方程组的一般步骤,能熟练地用加减法解较复杂的二元一次方程组。通过探索,选择较为合理、简单的消元方法,进一步理解解方程组的消元在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法,体会成功,激发兴趣将方程组化成两个方程中的某一未知数的系数的绝对值相等。将方程组化成两个方程中的某一未知数的系数的绝对值相等。观察、分析、类比电子白板、多媒体课件教学过程教学过程下列方程组用加减法可消哪一个元,如何消元,消元后的一元一次方程是什么?3x+4y=-3.44x-2y=5.66x-4y=5.27x-2y=7.7二、新授例l.解方程组9x+2y=15①3x+4y=10②分析如果用加减法解,直接把两个方程的两边相减能消去一个未知数吗?如果不行,那该怎么办呢?当两个方程中某个未知数系数的绝对值相等时,可用加减法求解,你有办法将两个方程中的某个系数变相同或相反吗?方程②中y的系数是方程①中y系数的2倍,所以只要将①×2例2.解方程组3x-4y=10①15x+6y=42②这个方程组中两个方程的x,y系数都不是整数倍。那么如何把其中一个未知数的系数变为绝对值相等呢?该消哪一个元比较简便呢?(让学生自主探索怎样适当地把方程变形,才能转化为例3或例4那样的情形。)分析:(1)若消y,两个方程未知数y系数的绝对值分别为4、6,要使它们变成12(4与6的最小公倍数),只要①×3,②×2(2)若消x,只要使工的系数的绝对最小公倍数,因此只要①×3,②×2)请同学们用加减法解本节例2中的方程组。2x-7y=83x-8y-10=0做完后,并比较用加减法和代人法解,哪种方法方便?教师讲评:应先整理为一般式。三、巩固练习四、小结(教师说出条件部分,学生回答结论部分)。若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。1.使学生进一步理解二元一次方程(组)的解的概念。2.使学生能够根据题目特点熟练地选用代入法或加减法解二元一次方程在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法,体会成功,激发兴趣理解二元一次方程(组)的解的概念及解法据题目特点熟练地选用代入法或加减法解二元一次方程组。观察、分析、类比电子白板、多媒体课件1.什么是二元一次方程,二元一次方程组以及它的解?2.解二元一次方程组有哪两种方法?它们的实际是什么?3.举例说明解二元一次方程组什么情况下用代人法,什么情况下用加减法?[当方程组中两个方程的某个未知数的系数的绝对值为l或有一个方程的常数项是。时,用代人法;当两个方程中某人未知数的系数的绝对值相等或成整数倍时,用加减法。)二、课堂练习1.方程2x+39=3与下面哪个方程所组成的方程组的解是A.41+6y=-6B.x-2y=5C.3x+4y=4D.以上都不对2.方程组3x-7y=7的解是否满足方程2x+3y=-5[满足,解法一,先求出方程组的解为x=把x,y值代入方y=-程2x+3y=-5的左边,左边=2×+3×(-)=-5=右边,解法二,不用求解,因为方程2x+3y=-5,是方程组中的第二个方程减去第一个方程得到的,所以方程组的解必满足方程2x+3y=-5]教学过3.解下列方程组应消哪个元,用哪一种方法较简便?教学过程4x-2y=1②①×②-②]-2x=-②由①得3x+2y=2代入②]4.解方程组3x+2z=10②-=②-=-1②(1)可以用加减法,①-②×2,也可以用代人法,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国工程爆破行业十三五规划及发展战略建议报告
- 家具购销合同协议格式
- 高效学习指导合同
- 延期借款合同示例
- 监理合同服务协议格式
- 专业猎头选拔服务合同
- 版安装服务合同样本
- 购销合同范本格式规范
- 内容推广合作宣传发布服务委托合同(2024年版)
- 借款分享合同(2024年版)
- FZ∕T 73037-2019 针织运动袜行业标准
- 食品风味研究专题智慧树知到期末考试答案章节答案2024年中国农业大学
- 《智能仪器》课后习题答案
- 浙江省小升初数学试卷及答案二
- 教学评一体化
- 2024年高考语文备考之现代文阅读史铁生《我二十一岁那年》(附习题+答案)
- 外国新闻传播史 课件 第21-23章 新西兰等国的新闻传播事业、巴西的新闻传播事业、墨西哥的新闻传播事业
- 大数据与会计职业生涯规划
- 宁德时代2024年社招测评题库
- 2023年度省综合专家库评标专家继续教育培训考试试题(三套)
- 电力配网安全培训课件
评论
0/150
提交评论