2025届贵州省从江县数学八年级第一学期期末监测试题含解析_第1页
2025届贵州省从江县数学八年级第一学期期末监测试题含解析_第2页
2025届贵州省从江县数学八年级第一学期期末监测试题含解析_第3页
2025届贵州省从江县数学八年级第一学期期末监测试题含解析_第4页
2025届贵州省从江县数学八年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省从江县数学八年级第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,边AC的垂直平分线交边AB于点D,连结CD.若∠A=50°,则∠BDC的大小为()A.90° B.100° C.120° D.130°2.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)3.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个4.下列图形经过折叠不能围成棱柱的是().A. B. C. D.5.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处6.若方程组的解中x与y的值相等,则k为()A.4 B.3 C.2 D.17.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,38.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、39.若在实数范围内有意义,则x满足的条件是()A.x≥ B.x≤ C.x= D.x≠10.把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y) B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y) D.(2﹣a)(2x﹣y)11.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3 D.(a3)2=a612.下列四组数据中,能作为直角三角形三边长的是()A.1,2,3 B.,3, C.,, D.0.3,0.4,0.5二、填空题(每题4分,共24分)13.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是_________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.计算:=_________.16.“同位角相等”的逆命题是__________________________.17.点A(5,﹣1)关于x轴对称的点的坐标是_____.18.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,的三个顶点分别为,,.把向上平移个单位后得到,请画出;已知点与点关于直线成轴对称,请画出直线及关于直线对称的.在轴上存在一点,满足点到点与点距离之和最小,请直接写出点的坐标.

20.(8分)如图,已知四边形各顶点的坐标分别为.(1)请你在坐标系中画出四边形,并画出其关于轴对称的四边形;(2)尺规作图:求作一点,使得,且为等腰三角形.(要求:仅找一个点即可,保留作图痕迹,不写作法)21.(8分)小慧根据学习函数的经验,对函数图像与性质进行了探究,下面是小慧的探究过程,请补充完整:(1)若,为该函数图像上不同的两点,则,该函数的最小值为.(2)请在坐标系中画出直线与函数的图像并写出当时的取值范围是.22.(10分)如图是一个正方体展开图,已知正方体相对两面的代数式的值相等;(1)求a、b、c的值;(2)判断a+b﹣c的平方根是有理数还是无理数.23.(10分)若正数、、满足不等式组,试确定、、的大小关系.24.(10分)如图,于,交于,,.(1)求证:;(2)求证:;(3)当,时,直接写出线段、的长度.25.(12分)已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.26.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?

参考答案一、选择题(每题4分,共48分)1、B【解析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50,∴∠BDC=∠DCA+∠A=100,故答案选:B.【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质.2、D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.3、A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.4、B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.5、A【分析】利用角平分线性质定理即可得出答案.【详解】角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以应建在三个内角平分线的交点上.故选A.考点:角平分线的性质6、C【解析】由题意得:x=y,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故选C.7、A【分析】根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.8、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:根据三角形任意两边的和大于第三边,可知

A、2+4<7,不能够组成三角形,故A错误;

B、2+3=5,不能组成三角形,故B错误;

C、7+3>7,能组成三角形,故C正确;

D、3+5<9,不能组成三角形,故D错误;

故选:C.【点睛】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.9、C【解析】由题意可知:,解得:x=,故选C.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.10、A【分析】根据提公因式法因式分解即可.【详解】2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y).故选:A.【点睛】此题考查的是因式分解,掌握用提公因式法因式分解是解决此题的关键.11、D【解析】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.12、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;

B、()2+()2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;

D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.

故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(每题4分,共24分)13、30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC、BD=BC得∠ABC=∠ACB、∠C=∠BDC,在△ABC中,∠A=40°,∠C=∠ABC,∴∠C=∠ABC=(180°−∠A)=(180°−40°)=70°;在△ABD中,由∠BDC=∠A+∠ABD得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角14、【解析】试题解析:∵四边形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、【分析】先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为【点睛】此题考查的是二次根式的性质和去绝对值.16、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.17、(5,1).【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点A(5,﹣1)关于x轴对称的点的坐标是(5,1).故答案为:(5,1).【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解决此题的关键.18、-1或7【详解】∵x+2(m-3)x+16是一个完全平方式,∴,∴m=-1或7.故答案是:-1或7三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)【解析】(1)根据图形平移的性质画出△A1B1C1;(2)连接AA1,再作AA1的垂直平分线,即为所求对称轴l,再根据两点关于直线对称的性质得到B2,C2,依次连接即可;(3)作点C关于x轴对称的点,连接交x轴于一点即为点P,写出点P的坐标即可.【详解】如图,即为所求;如图,和直线即为所求.(3)作点C关于x轴对称的点,连接交x轴于一点即为点P,如图所示:点C的坐标为(-4,-1)关于x轴对称的点(-4,1),设直线AC’的函数的解析式y=kx+b,且点A(-1,-2),在直线A上,解得,所以直线AC’的函数的解析式为,设y=0,则x=-3,即点P的坐标为(0,-3).【点睛】考查作图-轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.20、见解析【分析】(1)根据题意,描出O、A、B、C各点,连线即得四边形,然后作出各个点的关于轴对称的点,连线即得;(2)分别作BC、AC的垂直平分线,相交于点P,连接构成、、即得答案.【详解】(1)由题意,描出O、A、B、C各点,连线即得四边形,作出其关于轴对称的四边形,作图如下:(2)分别作BC、AC的垂直平分线,相交于点P,连接构成三角形,则点P即为所求作的点.【点睛】考查了数轴描点,会作点的关于直线的对称点,全等三角形的判定以及等腰三角形的判定,熟记几何图形的判定和性质是解题关键.21、(1),;(2)作图见解析,或【分析】(1)将代入函数解析式,即可求得m,由可知;(2)采用描点作图画出图象,再根据图象判断直线在函数图象下方时x的取值范围,即可得到时x的取值范围.【详解】(1)将代入得:,解得或-6∵,为该函数图像上不同的两点∴∵∴即函数的最小值为1,故答案为:-6,1.(2)当时,函数,当时,函数如图所示,设y1与y的图像左侧交点为A,右侧交点为B解方程组得,则A点坐标为,解方程组得,则B点坐标为观察图像可得:当直线在函数图象下方时,x的取值范围为或,所以当时的取值范围是或.故答案为:或.【点睛】本题考查了一次函数的图像与性质,熟练掌握一次函数交点的求法以及一次函数与不等式的关系是解题的关键.22、(1)a=3,b=1,c=±1;(1)无理数.【分析】(1)根据正方体相对两面的代数式的值相等可列出方程组,从而解出即可得出答案.(1)根据(1)的结果,将各组数据分别代入可判断出结果.【详解】(1)依题意,得,由①、②得方程组:,解得:,由③得:c=±1,∴a=3,b=1,c=±1.(1)当a=3,b=1,c=﹣1时a+b﹣c=3+1+1=6,a=3,b=1,c=1时a+b﹣c=3+1﹣1=1.∵和都是无理数,∴a+b﹣c的平方根是无理数.【点睛】本题考查了三元一次方程组的应用,对于本题来说,正确的列出并解出三元一次方程组是关键,注意第二问要在第一问的基础上进行.23、【分析】根据不等式的基本性质将三个不等式都变为a+b+c的取值范围,从而得出a、c的大小关系和b、c的大小关系,从而得出结论.【详解】解:①得,④②得,⑤③得,⑥由④,⑤得,所以同理,由④,⑥得,所以,,的大小关系为.【点睛】此题考查的是解不等式,掌握不等式的基本性质是解题关键.24、(1)证明见解析;(2)证明见解析;(3),.【分析】(1)首先根据HL证明即可;(2)可得,根据可得,即可得出结论;(3)根据30°的直角三角形的性质即可求出答案.【详解】(1)证明:,在与中,,;(2)由(1)知:,在中,,,即:(3)在Rt△CBE中,∠C=30°∴∴∵∴∴在Rt△AEF中,∠A=30°∴∴∴,.【点睛】本题主要考查了三角形全等的判定和性质,含30度角的直角三角形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题关键.25、见解析【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,

∴AD=AB,AE=AC,

∴∠DAE=∠BAD=∠CAE=60°

∴∠BAE=∠DAC=120°,

在△BAE和△DAC中

AD=AB,∠BAE=∠DAC,AE=AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论