2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题含解析_第1页
2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题含解析_第2页
2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题含解析_第3页
2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题含解析_第4页
2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省怀化市靖州苗族侗族自治县数学八上期末监测模拟试题拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在等边△ABC中,DE分别是边AB、AC上的点,且AD=CE,则∠ADC+∠BEA=()A.180° B.170° C.160° D.150°2.分式和的最简公分母是()A. B. C. D.3.若点P(1﹣3m,2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列运算正确的是()A. B.( C. D.5.如图,在平面直角坐标系中,将绕点逆时针旋转后,点对应点的坐标为()A. B. C. D.6.将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.7.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.38.如图,是的中线,是的中线,是的中线,若,则等于()A.16 B.14 C.12 D.109.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一次函数的与的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()A.随的增大而增大B.是方程的解C.一次函数的图象经过第一、二、四象限D.一次函数的图象与轴交于点二、填空题(每小题3分,共24分)11.如图,中,,,把沿翻折,使点落在边上的点处,且,那么的度数为________.12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.13.分式的最简公分母是_______.14.在平面直角坐标系中,、,点是轴上一点,且,则点的坐标是__________.15.分解因式:ab2﹣4ab+4a=.16.已知平行四边形中,,,,则这个平行四边形的面积为_____.17.如图在中,是的中线,是上的动点,是边上动点,则的最小值为______________.18.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有______名学生是骑车上学的.三、解答题(共66分)19.(10分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.20.(6分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD.(1)根据作图判断:△ABD的形状是;(2)若BD=10,求CD的长.21.(6分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).22.(8分)如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.23.(8分)我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到.请回答下列问题:(1)写出图2中所表示的数学等式是;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有,的式子表示);(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).24.(8分)如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.25.(10分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.(1)若,判断是否为奇异三角形,并说明理由;(2)若,,求的长;(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.26.(10分)如图,已知.(1)按以下步骤把图形补充完整:的平分线和边的垂直平分线相交于点,过点作线段垂直于交的延长线于点;(2)求证:所画的图形中.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,则∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,进而利用四边形内角和解答即可.【详解】∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC∵AD=CE∴△ADC≌△CEB(SAS)∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.∴∠BOC=120°,∴∠DOE=120°,∴∠ADC+∠BEA=360°﹣60°﹣120°=180°,故选:A.【点睛】本题考查四边形内角和、等边三角形的性质和全等三角形的判定(SAS)和性质,解题的关键是掌握等边三角形的性质和全等三角形的判定(SAS)和性质.2、C【分析】当所有的分母都是单项式时,确定最简公分母的方法:(1)取各分母系数的最小公倍数作为最简公分母的系数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.再结合题意即可求解.【详解】∵和的最简公分母是∴选C故选:C【点睛】通常取各分母系数的最小公倍数与字母因式的最高次幂最为最简公分母,本题属于基础题.3、B【分析】根据互为相反数的两个数的和为1,求出m的值,求出点P的坐标,进而判断点P所在的象限.【详解】解:∵点P(1﹣3m,2m)的横坐标与纵坐标互为相反数,∴2m=﹣(1﹣3m),解得m=1,∴点P的坐标是(﹣2,2),∴点P在第二象限.故选:B.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为1,y轴上的点横坐标为1.4、C【详解】A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;

B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.

C、(ab)3=a3b3,故本选项正确;

D、a6÷a2=a4同底数幂的除法,底数不变指数相减,故本选项错误.

故选C.【点睛】同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘.5、D【分析】根据旋转变换只改变图形的位置不改变图形的形状和大小作出旋转后的图形,即可得出答案.【详解】如图,△ABC绕点A逆时针旋转90°后,B点对应点的坐标为(0,2),故答案选择D.【点睛】本题考查的是坐标与图形的变化——旋转,记住旋转只改变图形的位置不改变图形的形状和大小.6、C【分析】让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.7、D【分析】过点作于,然后利用的面积公式列式计算即可得解.【详解】解:过点作于,是的角平分线,,,,解得.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.8、A【分析】根据三角形的中线将三角形分成面积相等的两个三角形即可解答.【详解】解:∵是的中线,,∴,又∵是的中线,∴,又∵是的中线,∴,故答案为:A.【点睛】本题考查了三角形的中线的性质,解题的关键是熟知三角形的中线将三角形分成面积相等的两个三角形.9、C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.10、C【分析】根据待定系数法求出一次函数解析式,再根据一次函数的图像与性质即可求解.【详解】把(0,2)、(1,-1)代入得解得∴一次函数解析式为y=-3x+2∵k=-3<0,∴随的增大而减小,故A错误;把代入,故B错误;一次函数y=-3x+2的图象经过第一、二、四象限,故C正确;令y=0,-3x+2=0,解得x=,一次函数y=-3x+2的图象与轴交于点,故D错误,故选C.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法的应用.二、填空题(每小题3分,共24分)11、【解析】根据等腰三角形的性质,求得∠C,然后利用三角形内角和求得∠FEC,再根据邻补角的定义求得∠AEF,根据折叠的性质可得∠AED=∠FED=∠AEF,在△ADE中利用三角形内角和定理即可求解.【详解】解:∵中,,,∴∠B=∠C=45°又∵∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC=60°又∵∠AED=∠FED=∠AEF=30°,∠A=90°,∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.12、SSS【解析】试题分析:根据作图得出AB=AD,CD=CB,根据全等三角形的判定得出即可.解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为SSS.考点:全等三角形的判定.13、【分析】根据题意,把分母进行通分,即可得到最简公分母.【详解】解:分式经过通分,得到;∴最简公分母是;故答案为:.【点睛】本题考查了最简公分母的定义,解题的关键是掌握公分母的定义,正确的进行通分.14、(,0)【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得所以点的坐标是(,0)故答案为:(,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.15、a(b﹣1)1.【解析】ab1﹣4ab+4a=a(b1﹣4b+4)﹣﹣(提取公因式)=a(b﹣1)1.﹣﹣(完全平方公式)故答案为a(b﹣1)1.16、40【分析】作高线CE,利用30角所对直角边等于斜边的一半求得高CE,再运用平行四边形的面积公式计算即可.【详解】过C作CE⊥AB于E,在Rt△CBE中,∠B=30,,

∴,.故答案为:.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用“30角所对直角边等于斜边的一半”求解.17、【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据等腰三角形“三线合一”得出BD的长和AD⊥BC,再利用勾股定理求出AD,利用“等面积法”结合垂线段最短进一步求出最小值即可.【详解】如图,作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是△ABC的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理可得:AD=,∴,∴,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短可得:CM≥CN,即:CF+EF≥,∴CF+EF的最小值为:,故答案为:.【点睛】本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.18、1【分析】根据条形统计图求出骑车上学的学生所占的百分比,再乘以总人数即可解答.【详解】解:根据题意得:2000×=1(名),答:该校2000名学生有1名学生是骑车上学的.故答案为:1.【点睛】本题考查了用样本估计总体和条形统计图,解题的关键是根据条形统计图求出骑车上学的学生所占的比例.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.20、(1)等腰三角形;(2)1【分析】(1)由作图可知,MN垂直平分线段AB,利用垂直平分线的性质即可解决问题.(2)求出∠CAD=30°,利用直角三角形30度的性质解决问题即可.【详解】解:(1)由作图可知,MN垂直平分线段AB,∴DA=DB,∴△ADB是等腰三角形.故答案为等腰三角形.(2)∵∠C=90°,∠B=30°,∴∠CAB=90°﹣30°=60°,∵DA=DB=10,∴∠DAB=∠B=30°,∴∠CAD=30°,∴CD=AD=1.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质,等腰三角形的性质,直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)1;(2)-6x+5y【分析】(1)根据实数的混合运算法则进行计算即可得解;(2)根据整式的混合运算法则进行计算即可得解.【详解】(1)原式==4-3+1-1=1;(2)原式====.【点睛】本题主要考查了实数及整式的混合运算,熟练掌握相关运算法则是解决本题的关键.22、(1)见解析;(2)见解析【分析】(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,根据角平分线性质求出PQ=PS=PT,根据角平分线性质得出即可;

(2)根据ASA求出△AED≌△AEC即可.【详解】解:证明:(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,

∴PQ=PT,PS=PT,

∴PQ=PS,

∴AP平分∠DAC,

即PA平分∠BAC的外角∠CAM;

(2)∵PA平分∠BAC的外角∠CAM,

∴∠DAE=∠CAE,

∵CE⊥AP,

∴∠AED=∠AEC=90°,

在△AED和△AEC中,,∴△AED≌△AEC(ASA),

∴CE=ED.【点睛】本题考查了角平分线性质和全等三角形的性质和判定的应用,解此题的关键是能正确作出辅助线并进一步求出PQ=PS和△AED≌△AEC,注意:角平分线上的点到角两边的距离相等.23、(1);(2);(3)大小【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,(2)(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.24、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.

(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;

(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;

②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【详解】解:(1)如图1,

由题可得:AP=OQ=1×t=t,

∴AO=PQ.

∵四边形OABC是正方形,

∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.

∴BP=,

∵DP⊥BP,

∴∠BPD=90°.

∴∠BPA=90°-∠DPQ=∠PDQ.

∵AO=PQ,AO=AB,

∴AB=PQ.

在△BAP和△PQD中,,

∴△BAP≌△PQD(AAS).

∴AP=QD,BP=PD.

∵∠BPD=90°,BP=PD,

∴∠PBD=∠PDB=45°.

∵AP=t,

∴DQ=t

∴点D坐标为(t,t).

故答案为:,(t,t),45°.

(2)△POE周长是一个定值为1,理由如下:

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=1.

∴△POE周长是定值,该定值为1.

(3)①若BP=BE,

在Rt△BAP和Rt△BCE中,,

∴Rt△BAP≌Rt△BCE(HL).

∴AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO=5-t.

∵∠POE=90°,

∴△POE是等腰直角三角形,

∴PE=PO=(5-t).

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴EP=t+t=2t.

∴(5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论