2025届福建省福州市鳌峰数学八上期末学业质量监测试题含解析_第1页
2025届福建省福州市鳌峰数学八上期末学业质量监测试题含解析_第2页
2025届福建省福州市鳌峰数学八上期末学业质量监测试题含解析_第3页
2025届福建省福州市鳌峰数学八上期末学业质量监测试题含解析_第4页
2025届福建省福州市鳌峰数学八上期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省福州市鳌峰数学八上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④2.下列运算:,,,其中结果正确的个数为()A.1 B.2 C.3 D.43.如图,在长方形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于()A.4.83 B.4 C.22 D.324.在平面直角坐标系中,直线y=2x﹣3与y轴的交点坐标是()A.(0,﹣3) B.(﹣3,0) C.(2,﹣3) D.(,0)5.下列满足条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三内角之比为3:4:5C.三边之比为3:4:5 D.三边之比为5:12:136.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。从袋中摸出4个球,下列属于必然事件的是()A.摸出的4个球其中一个是绿球 B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球 D.摸出的4个球中没有红球7.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B. C.或 D.或8.如图,,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对9.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.210.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数 B.平均数 C.中位数 D.方差二、填空题(每小题3分,共24分)11.一个正方形的边长为3,它的边长减少后,得到新正方形的周长为,与之间的函数表达式为__________.12.三边都不相等的三角形的三边长分别为整数,,,且满足,则第三边的值为________.13.某单位定期对员工按照专业能力、工作业绩、考勤情况三方面进行考核(每项满分100分),三者权重之比为,小明经过考核后三项分数分别为90分,86分,83分,则小明的最后得分为_________分.14.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____15.若x2+ax+4是完全平方式,则a=_____.16.如图,在四边形中,是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;点同时以每秒3个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动,当运动时间为秒时,以点为顶点的四边形是平行四边形,则的值等于_______.17.若+(y﹣1)2=0,则(x+y)2020=_____.18.已知:如图,和为两个共直角顶点的等腰直角三角形,连接、.图中一定与线段相等的线段是__________.三、解答题(共66分)19.(10分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:AE=DE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.20.(6分)如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.21.(6分)已知在一个多边形中,除去一个内角外,其余内角和的度数是1125°,求这个多边形的边数.22.(8分)某地农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜该地农业部门对2017年的油菜籽的生产成本、市场价格、种植面积和产量等进行了统计,并绘制了如下的统计表与统计图(如图):请根据以上信息解答下列问题:(1)种植每亩油菜所需种子的成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2017年该地全县农民冬种油菜的总获利是多少元?(结果用科学记数法表示).23.(8分)请你先化简:,然后从中选一个合适的整数作为x的值代入求值.24.(8分)如图,在平面直角坐标系xOy中,一次函数y1=−x+2与x轴、y轴分别相交于点A和点B,直线y2=kx+b(k≠0)经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求A、

B的坐标;(2)求△ABO的面积;(3)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式.25.(10分)如图,已知A(0,4),B(-4,1),C(3,0).(1)写出△ABC关于x轴对称的△A1B1C1的点A1,B1,C1的坐标;(2)求△A1B1C1的面积.26.(10分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.2、B【分析】由题意根据同底数幂的除法与乘法、幂的乘方和积的乘方,依次对选项进行判断即可.【详解】解:,故计算错误;,故计算正确;,故计算错误;,故计算正确;正确的共2个,故选:B.【点睛】本题考查同底数幂的除法与乘法、幂的乘方和积的乘方问题,关键是根据同底数幂的除法与乘法以及幂的乘方和积的乘方的法则进行分析.3、C【分析】根据矩形的性质和等腰直角三角形的性质可求BC,DE,CE,AE,BE,进一步得到CD和AB的长,再根据三角形周长的定义即可求解.【详解】∵四边形ABCD是长方形,∴BC=AD=1,∠C=∠D=90°.∵∠DAE=∠CBE=45°,∴DE=1,CE=1,AE,BE,∴AB=CD=1+1=2,∴△ABE的周长=22+2.故选:C.【点睛】本题考查了矩形的性质,等腰直角三角形的性质,关键是熟悉等底等高的三角形面积是长方形面积的一半的知识点.4、A【分析】当直线与y轴相交时,x=0,故将x=0代入直线解析式中,求出交点坐标即可.【详解】把x=0代入y=2x﹣3得y=﹣3,所以直线y=2x﹣3与y轴的交点坐标是(0,﹣3).故选:A.【点睛】本题考查了直线与y轴的交点坐标问题,掌握直线与y轴的交点坐标的性质以及解法是解题的关键.5、B【分析】根据三角形的内角和定理和勾股定理的逆定理逐一判断即可.【详解】解:A.若三内角之比为1:2:3,则最大的内角为180°×=90°,是直角三角形,故本选项不符合题意;B.三内角之比为3:4:5,则最大的内角为180°×=75°,不是直角三角形,故本选项符合题意;C.三边之比为3:4:5,设这三条边为3x、4x、5x,因为(3x)2+(4x)2=(5x)2,所以能够成直角三角形,故本选项不符合题意;D.三边之比为5:12:13,设这三条边为5x、12x、13x,因为(5x)2+(12x)2=(13x)2,所以能够成直角三角形,故本选项不符合题意.故选B.【点睛】此题考查的是直角三角形的判定,掌握三角形的内角和定理和勾股定理的逆定理是解决此题的关键.6、B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7、C【分析】题目给出等腰三角形有一条边长为4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当4是腰长时,底边=14-4×2=6,此时4,4,6三边能够组成三角形,所以其腰长为4;

当4为底边长时,腰长为×(14-4)=5,

此时4、5、5能够组成三角形,

所以其腰长为5,

故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8、C【分析】先利用SAS证出△ABD≌△CDB,从而得出AD=CB,再利用SSS证出△ABC≌△CDA,从而得出∠ABO=∠CDO,最后利用AAS证出△ABO≌△CDO,即可得出结论.【详解】解:在△ABD和△CDB中∴△ABD≌△CDB∴AD=CB在△ABC和△CDA中∴△ABC≌△CDA∴∠ABO=∠CDO在△ABO和△CDO中∴△ABO≌△CDO共有3对全等三角形故选C.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.9、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【点睛】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.10、D【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.二、填空题(每小题3分,共24分)11、y=-4x+12【分析】根据正方形的周长公式:正方形的周长=4×边长即可得出结论.【详解】解:根据正方形的周长公式,y=4(3-x)=-4x+12故答案为:y=-4x+12【点睛】此题考查的是求函数的解析式,掌握正方形的周长公式:正方形的周长=4×边长是解决此题的关键.12、1【分析】由题意利用配方法和非负数的性质求得a、b的值,再根据三角形的三边关系定理求出第三边的值.【详解】解:∵,∴,∴,解得,∵1<c<5,三边都不相等∴c=1,即c的长为1.故答案为:1.【点睛】本题考查配方法的应用和三角形的三边关系以及非负数的性质,熟练掌握完全平方公式是解本题的关键.13、82.2【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【详解】解:小明的最后得分=27+43+1.2=82.2(分),

故答案为:82.2.【点睛】此题主要考查了加权平均数,关键是掌握加权平均数的计算方法.若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.14、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.15、±1.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去a和2积的2倍,故a=±1.【详解】解:中间一项为加上或减去a和2积的2倍,故a=±1,故答案为±1.【点睛】本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16、2或3.5【分析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】如图,∵E是BC的中点,∴BE=CE=BC=9,①当Q运动到E和B之间,则得:3t﹣9=5﹣t,解得:t=3.5;②当Q运动到E和C之间,则得:9﹣3t=5﹣t,解得:t=2,∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.17、1【分析】利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.【详解】解:∵+(y﹣1)2=0,∴x+2=0,y﹣1=0,解得:x=﹣2,y=1,则(x+y)2020=(﹣2+1)2020=1.故答案为:1.【点睛】本题考查了偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.18、BE【解析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC-∠BAD=∠DAE-∠BAD,∴∠DAC=∠BAE,∵在△CAD和△BAE中,,∴△CAD≌△BAE,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.三、解答题(共66分)19、(1)见解析;(2)65°【分析】(1)根据BE平分∠ABC,可以得到∠ABE=∠DBE,然后根据题目中的条件即可证明△ABE和△DBE全等,从而可以得到结论成立;(2)根据三角形内角和求出∠ABC=30°,根据角平分线的定义求出∠CBE=15°,,然后根据外角的性质可以得到∠AEB的度数.【详解】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),∴AE=DE;(2)∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE,∴∠CBE=15°,∴∠AEB=∠C+∠CBE=50°+15°=65°.【点睛】本题考查全等三角形的判定与性质、角平分线的定义,以及三角形外角的性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.20、(1)AB的长为10;(2)△ADE的面积为36;(3)M点的坐标(4,-4)或(12,12)【分析】(1)利用直线AB的函数解析式求出A、B坐标,再利用勾股定理求出AB即可;(2)由折叠知∠B=∠C,∠BDA=∠CDA,由∠BAO=∠CAE证得∠AEC=∠AOB=90º,利用角平分线的性质得到OA=AE,进而证得Rt△AOD≌Rt△AED,利用全等三角形的性质和三角形的面积公式求解即可;(3)由待定系数法求出直线AB的解析式,设点M的坐标,根据折叠性质知MB=MC,根据题意,有,代入点M坐标解方程即可求解.【详解】(1)当x=0时,y=8,∴B(0,8),当y=0时,由得,x=6,∴A(6,0),在Rt△AOB中,OA=6,OB=8,由勾股定理得:AB==10;(2)由折叠性质得:∠B=∠C,∠BDA=∠CDA,AC=AB=10,BD=DC,∴OC=16,设OD=x,则DC=BD=x+8,在Rt△COD中,由勾股定理得:,解得:OD=12,∵∠BAO=∠CAE,且∠B+∠BAO+∠AOB=∠C+∠CAE+∠AEC=180º,∴∠AEC=∠AOB=90º,∴∠AED=∠AOD=90º,又∵∠BDA=∠CDA,∴OA=AE=3,在Rt△AOD和Rt△AED中,,∴Rt△AOD≌Rt△AED,∴;(3)设直线AD的解析式为y=kx+b,由(2)中OD=12得:点D坐标为(0,-12),将点D(0,-12)、A(6,0)代入,得:,解得:,∴直线AD的解析式为y=2x-12,∵点M为直线AD上一点,故设点M坐标为(m,2m-12),由折叠性质得:MB=MC,且△MBC为等腰直角三角形,∴∠BMC=90º在Rt△BOC和Rt△BMC中,由勾股定理得:,,即,∴,即,解得:m=4或m=12,则满足条件的点M坐标为(4,-4)或(12,12).【点睛】本题主要考查一次函数的图象与性质、求一次函数解析式、勾股定理、折叠的性质、角平分线的性质定理、全等三角形的判定与性质、一元二次方程等知识,解答的关键是认真审题,寻找相关信息的关联点,利用数形结合法、待定系数法等思想方法确定解题思路,进而推理、探究、发现和计算.21、9【分析】根据多边形的内角和公式列出关于边数的方程,再由减去的内角的范围结合不等式来分析即可得出结果.【详解】设这个多边形的边数为,这个内角为,根据题意,

得,

由,解得:.则该多边形边数是.【点睛】本体考查多边形的内角和及运用不等式求解,熟记多边形的内角和公式是解题关键.22、(1)12元;(2)289.6元;(3)1.1584×108元【分析】(1)种植油菜每亩的种子成本=每亩油菜生产成本×种子所占的百分比即可;

(2)农民冬种油菜每亩获利的钱数=每亩的产量×油菜市场价格-每亩油菜生产成本.

(3)2017年全县农民冬种油菜的总获利=种油菜每亩获利的钱数×种植面积【详解】解:(1)根据题意得:

1-10%-35%-45%=10%,

120×10%=12(元),

答:种植油菜每亩的种子成本是12元;

(2)根据题意得:

128×3.2-120=289.6(元),

答:农民冬种油菜每亩获利289.6元;

(3)根据题意得:

289.6×400000=115840000=1.1584×108(元),

答:2014年南县全县农民冬种油菜的总获利为1.1584×108元.【点睛】本题主要考查应用数学的意识和利用数据解决实际问题的能力.解决此类问题的关键是分析图表各数据的联系,挖掘隐含意义.23、,当时,原式.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一).【详解】===,当时,原式.24、(1)A(3,0),B(0,2);(2)3;(3)P(,),y=-1x+1【分析】(1)已知直线y1的解析式,分别令x=0和y=0即可求出A和B的坐标;(2)根据(1)中求出的A和B的坐标,可知OA和OB的长,利用三角形的面积公式即可求出S△ABO;(3)由(2)中的S△ABO,可推出S△APC的面积,求出yp,继而求出点P的坐标,将点C和点P的坐标联立方程组求出k和b的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y1=-x+2,令x=0,得y1=2,∴B(0,2),令y1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S△ABO=OA•OB=×3×2=3;(3)∵S△ABO=×3=,点P在第一象限,∴S△APC=AC•yp=×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论