2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题含解析_第1页
2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题含解析_第2页
2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题含解析_第3页
2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题含解析_第4页
2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省长沙市芙蓉区长郡芙蓉中学数学八上期末学业水平测试试题平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.52 B.68 C.72 D.762.有一张三角形纸片ABC,已知∠B=∠C=α,按下列方案用剪刀沿着箭头方向剪开,所剪下的三角形纸片不一定是全等图形的是()A. B.C. D.3.已知a=2−2,b=A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.5.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍 B.扩大9倍 C.不变 D.扩大3倍7.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.8.如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE=CD,AB=8cm,则△DEB的周长为()A.4cm B.8cm C.10cm D.14cm9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD10.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个11.已知为整数,且为正整数,求所有符合条件的的值的和()A.0 B.12 C.10 D.812.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.9二、填空题(每题4分,共24分)13.如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为__________.14.已知,则________.15.如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择________题.A.的面积是______,B.图2中的值是______.16.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)17.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.18.如图,将等边沿翻折得,,点为直线上的一个动点,连接,将线段绕点顺时针旋转的角度后得到对应的线段(即),交于点,则下列结论:①;②;③当为线段的中点时,则;④四边形的面积为;⑤连接、,当的长度最小时,则的面积为.则说法正确的有________(只填写序号)三、解答题(共78分)19.(8分)我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要分钟完成.如果一班与二班共同整理分钟后,一班另有任务需要离开,剩余工作由二班单独整理分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?20.(8分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?21.(8分)若x+y=3,且(x+2)(y+2)=1.(1)求xy的值;(2)求x2+3xy+y2的值.22.(10分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.23.(10分)甲、乙两人两次同时在同一家超市采购货物(假设两次采购货物的单价不相同),甲每次采购货物100千克,乙每次采购货物用去100元.(1)假设a、b分别表示两次采购货物时的单价(单位:元/千克),试用含a、b的式子表示:甲两次采购货物共需付款元,乙两次共购买千克货物.(2)请你判断甲、乙两人采购货物的方式哪一个的平均单价低,并说明理由.24.(10分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:路线1:高线底面直径,如图所示,设长度为.路线2:侧面展开图中的线段,如图所示,设长度为.请按照小明的思路补充下面解题过程:(1)解:;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)①此时,路线1:__________.路线2:_____________.②所以选择哪条路线较短?试说明理由.25.(12分)如图所示,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,−2),C(4,0).(1)请在图中画出△ABC关于y轴对称的△A′B′C′,并写出三个顶点A′、B′、C′的坐标.(2)求△ABC的面积.26.在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.

参考答案一、选择题(每题4分,共48分)1、D【分析】先根据勾股定理求出BD的长度,然后利用外围周长=即可求解.【详解】由题意可知∵∴∴风车的外围周长是故选:D.【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.2、D【分析】根据全等三角形的判定定理进行判断即可.【详解】A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,∵BD=CE=3是对应边,由AAS判定两个小三角形全等,故本选项不符合题意;D、如图2,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;故选D.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.3、B【解析】先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】a=2b=π−2c=−11>1故选:B.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.4、A【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.5、B【分析】轴对称图形是指将图形沿着某条直线对折,直线两边的图形能够完全重叠,根据定义判断即可.【详解】A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.【点睛】本题考查轴对称图形的识别,熟记轴对称图形的定义是关键.6、B【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.【详解】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7、B【分析】由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8、B【分析】因为DE和CD相等,DE⊥AB,∠C=90°,所以AD平分CAB,可证得△ACD≌△AED,得到AC=AE,再根据△BDE为等腰直角三角形得出DE=BE,从而可得△DEB的周长.【详解】解:∵∠C=90°,DE⊥AB,DE=CD,

∴∠C=∠AED=90°,∠CAD=∠EAD,在Rt△ACD和Rt△AED中,,

∴△ACD≌△AED(HL),

∴AC=AE,

又∵∠AED=90°,∠B=45°,

可得△EDB为等腰直角三角形,DE=EB=CD,

∴△DEB的周长=DE+BE+DB=CD+DB+BE=CB+BE=AC+BE=AE+BE=AB=8,

故选:B.【点睛】本题考查了角平分线的判定,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.9、A【详解】解:如图连接CD、BD,∵CA=CD,BA=BD,

∴点C、点B在线段AD的垂直平分线上,

∴直线BC是线段AD的垂直平分线,

故A正确.

B、错误.CA不一定平分∠BDA.

C、错误.应该是S△ABC=•BC•AH.

D、错误.根据条件AB不一定等于AD.

故选A.10、C【分析】轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【详解】前三个均是轴对称图形,第四个不是轴对称图形,故选C.【点睛】本题考查的是轴对称图形,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.11、C【分析】先把化简,再根据要求带入符合要求的数,注意检查分母是否为零.【详解】原式===.因为a为整数且为整数,所以分母或,解得a=4,2,6,0,.检验知a=2时原式无意义,应舍去,a的值只能为4,6,0.所以所有符合条件的a的值的和为4+6+0=10.故选C.【点睛】本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.12、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理二、填空题(每题4分,共24分)13、【分析】由三角形面积公式可求BF的长,从而根据勾股定理可求AF的长,根据线段的和差可求CF的长,在Rt△CEF中,根据勾股定理可求DE的长,即可求△ADE的面积.【详解】解:∵四边形ABCD是矩形,

∴AB=CD=6cm,BC=AD,,∴BF=8cm,在Rt△ABF中,,根据折叠的性质,AD=AF=10cm,DE=EF,∴BC=10cm,

∴FC=BC-BF=2cm,在Rt△EFC中,EF2=EC2+CF2,

∴DE2=(6-DE)2+4,,,故答案为:.【点睛】本题考查折叠的性质,矩形的性质,勾股定理.理解折叠前后对应线段相等是解决此题的关键.14、1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】根据题意得,a−4=2,b+3=2,解得a=4,b=−3,所以1.故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.也考查了求算术平方根.15、A.B.【解析】由图形与函数图像的关系可知Q点为AQ⊥BC时的点,则AQ=4cm,再求出AB=×3s=6cm,利用勾股定理及可求出BQ,从而求出BC,即可求出的面积;再求出的周长,根据速度即可求出m.【详解】如图,当AQ⊥BC时,AP的长度最短为4,即AQ=4,AB=×3s=6cm,∴BQ=∵∴BC=2BQ=4∴的面积为=;的周长为6+6+4=12+4∴m=(12+4)÷2=故答案为:A;或B;.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质及函数图像的性质.16、或或或【分析】由于多项式1x2+1加上一个单项式后能成为一个整式的完全平方,那么此单项式可能是二次项、可能是常数项,可能是一次项,还可能是1次项,分1种情况讨论即可.【详解】解:∵多项式1x2+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是1次项,①∵1x2+1-1x2=12,故此单项式是-1x2;②∵1x2+1±1x=(2x±1)2,故此单项式是±1x;③∵1x2+1-1=(2x)2,故此单项式是-1;④∵1x1+1x2+1=(2x2+1)2,故此单项式是1x1.故答案是-1x2、±1x、-1、1x1.17、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.18、①②【分析】由等边三角形的性质和折叠的性质,得到四边形ABCD是菱形,则可以判断①、②;当点E时AD中点时,可得△CPF是直角三角形,CE=CF=3,得到,可以判断③;求出对角线的长度,然后求出菱形的面积,可以判断④;当点E与点A重合时,DF的长度最小,此时四边形ACFD是菱形,求出对角线EF和CD的长度,求出面积,可以判断⑤;即可得到答案.【详解】解:根据题意,将等边沿翻折得,如图:∴,∠BCD=120°,∴四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO;故①、②正确;∴,∴,∴,∴菱形ABCD的面积=,故④错误;当点E时AD中点时,CE⊥AD,∴DE=,∠DCE=30°,∴,∵,∠PCF=120°,∠F=30°,∴,故③错误;当点E与点A重合时,DF的长度最小,如图:∵AD∥CF,AD=AC=CF,∴四边形ACFD是菱形,∴CD⊥EF,CD=,,∴;故⑤错误;∴说法正确的有:①②;故答案为:①②.【点睛】本题是四边形综合题目,考查了旋转的性质,菱形的性质、等边三角形的性质,勾股定理、菱形的面积,三角形面积公式等知识;本题综合性强,熟练掌握菱形的性质和等边三角形的性质是解决问题的关键.三、解答题(共78分)19、1分钟【分析】设二班单独整理这批实验器材需要x分钟,则根据甲的工作量+乙的工作量=1,列方程,求出x的值,再进行检验即可;【详解】解:设二班单独整理这批实验器材需要x分钟,由题意得,解得x=1.经检验,x=1是原分式方程的根.答:二班单独整理这批实验器材需要1分钟;【点睛】本题考查的是分式方程的应用,根据题意列出关于x的方程是解答此题的关键.20、(1)去年每吨大蒜的平均价格是3500元;(2)应将120吨大蒜加工成蒜粉,最大利润为228000元.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x-500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【详解】(1)设去年每吨大蒜的平均价格是x元,由题意得,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300-m)吨加工成蒜片,由题意得,解得:100≤m≤120,总利润为:1000m+600(300-m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.21、(1)2;(2)2【分析】(1)先去括号,再整体代入即可求出答案;

(2)先配方变形,再整体代入,即可求出答案.【详解】解:(1)∵x+y=3,(x+2)(y+2)=1,

∴xy+2x+2y+4=1,

∴xy+2(x+y)=8,

∴xy+2×3=8,

∴xy=2;

(2)∵x+y=3,xy=2,

∴x2+3xy+y2

=(x+y)2+xy

=32+2

=2.【点睛】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.22、(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.23、(1)200a,;(2)乙的平均单价低,理由见解析.【分析】(1)甲购买共付款200a元;乙够买了kg;(2)设两次的单价分别为x元与y元,甲购买的平均单价,乙够买的平均单价,作差比较大小0,即可判断乙的平均单价低.【详解】解:(1)∵甲购买的单价a元,购买200kg,∴甲购买共付款200a元;∵乙花费100元,购买的单价b元,∴乙够买了kg;(2)设两次的单价分别为x元与y元,由题意可得:甲购买的平均单价,乙够买的平均单价,∵0,∴乙的平均单价低.【点睛】本题考查了列代数式;理解题意,列出代数式,并能用作差的方法比较代数式的大小是解题的关键.24、(1)见解析;(2)①.,②选择路线2较短,理由见解析.【分析】(1)根据勾股定理易得路线1:l12=AC2=高2+底面周长一半2;路线2:l22=(高+底面直径)2;让两个平方比较,平方大的,底数就大.(2)①l1的长度等于AB的长度与BC的长度的和;l2的长度的平方等于AB的长度的平方与底面周长的一半的平方的和,据此求出l2的长度即可;②比较出l12、l22的大小关系,进而比较出l1、l2的大小关系,判断出选择哪条路线较短即可【详解】(1);即所以选择路线1较短.(2)①l1=4+2×2=8,.②,即所以选择路线2较短.【点睛】此题主要考查了最短路径问题,以及圆柱体的侧面展开图,此题还考查了通过比较两个数的平方的大小,判断两个数的大小的方法的应用,要熟练掌握.25、(1)画图见解析;(2)面积为10.1.【分析】(1)根据关于y轴对称的点的坐标特点画出△A′B′C′,再写出△A′B′C′各点的坐标;

(2)根据三角形的面积公式计算.【详解】(1)如图所示,△A′B′C′即为所求,A′(-1,1),B′(-1,-2),C′(-4,0);

(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论