版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市峨眉山市2025届数学八年级第一学期期末检测模拟试题末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个2.已知等腰三角形的一个外角等于,则它的顶角是()A. B. C.或 D.或3.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是()A. B. C. D.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④5.下列计算正确的是()A.a3•a⁴=a12 B.(ab2)3=ab6 C.a10÷a2=a5 D.(﹣a4)2=a86.已知:△ABC≌△DCB,若BC=10cm,AB=6cm,AC=7cm,则CD为()A.10cm B.7cm C.6cm D.6cm或7cm7.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2 B.2、1 C.2、2 D.2、38.判断以下各组线段为边作三角形,可以构成直角三角形的是()A.6,15,17 B.7,12,15 C.13,15,20 D.7,24,259.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B. C. D.10.分式有意义,则的取值范围是()A. B. C. D.11.已知点在轴的负半轴,则点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,在中,按以下步骤作图:①分别以,为圆心,以大于的长为半径作弧,两弧相交于,两点;②作直线交于点,连接,若,,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.若,,且,则__________.14.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.15.计算:(x+a)(y-b)=______________________16.已知,求=___________.17.如图,中,,,、分别是、上两点,连接并延长,交的延长线于点,此时,,则的度数为______.18.已知,则____.三、解答题(共78分)19.(8分)如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求20.(8分)如图,在中,,,点是上一动点,连结,过点作,并且始终保持,连结.(1)求证:;(2)若平分交于,探究线段之间的数量关系,并证明.21.(8分)为了适应网购形式的不断发展,某邮政快递公司更新了包裹分拣设备后,平均每名邮递员每天比原先要多分拣60件包裹,而且现在分拣550件包裹所需要的时间与原来分拣350件包裹所需时间相同,问现在平均每名邮递员每天分拣多少件包裹?22.(10分)(1)如图中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)如图中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.23.(10分)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.24.(10分)小明遇到这样一个问题如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.25.(12分)如图,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.26.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88________乙________81.1丙6________3(1)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.
参考答案一、选择题(每题4分,共48分)1、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.2、D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°,∴它的顶角是:或.故选D.【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键.3、C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A是轴对称图形,∴A不符合题意,∵B是轴对称图形,∴B不符合题意,∵C不是轴对称图形,∴C符合题意,∵D是轴对称图形,∴D不符合题意,故选C.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.4、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.5、D【分析】分别根据同底数幂的乘除法以及幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A.a3•a⁴=a7,故本选项不合题意;B.(ab2)3=a6b6,故本选项不合题意;C.a10÷a2=a8,故本选项不合题意;D.(﹣a4)2=a8,正确,故本选项符合题意.故选:D.【点睛】本题考查同底数幂的乘除计算,幂的乘方,积的乘方计算,关键在于熟练基础计算方法.6、C【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.7、D【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,
∵3×60°+2×90°=360°,
∴需要正方形2块,正三角形3块.
故选D.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8、D【解析】根据勾股定理的逆定理逐一判断即可.【详解】A.因为62+152≠172,所以以6,15,17为边的三角形不是直角三角形,故A不符合题意;B.因为72+122≠152,所以以7,12,15为边的三角形不是直角三角形,故B不符合题意;C.因为132+152≠202,所以以13,15,20为边的三角形不是直角三角形,故C不符合题意D.因为72+242=252,所以以7,24,25为边的三角形是直角三角形,故D符合题意;故选D.【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.9、C【分析】设总工程量为1,根据甲单独做需要m天完成,乙单独做需要n天完成,可以求出甲乙每天的工作效率,从而可以得到甲乙合作需要的天数。【详解】设总工程量为1,则甲每天可完成,乙每天可完成,所以甲乙合作每天的工作效率为所以甲、乙合作完成工程需要的天数为故答案选C【点睛】本题考查的是分式应用题,能够根据题意求出甲乙的工作效率是解题的关键。10、B【分析】根据分式有意义的条件,即可得到答案.【详解】解:∵分式有意义,∴,∴;故选:B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分母不等于0时,分式有意义.11、D【分析】根据坐标轴上点的坐标特征,x轴负半轴上点的横坐标为负数,再根据相反数的意义和有理数的加法判断M的坐标符号.【详解】解:点在轴的负半轴,,,在第四象限,故选:D【点睛】本题考查了直角坐标系内点的坐标特征,正确理解坐标轴上点的坐标特征及有理数的加法法则是解答本题的关键.12、D【分析】根据作图方法可知:MN是BC的中垂线,根据中垂线的性质可得:DC=DB,然后根据等边对等角可得∠DCB=∠B=25°,然后根据三角形外角的性质即可求出∠CDA,再根据等边对等角即可求出∠A,然后利用三角形的内角和定理即可求出∠ACB.【详解】解:根据作图方法可知:MN是BC的中垂线∴DC=DB∴∠DCB=∠B=25°∴∠CDA=∠DCB+∠B=50°∵∴∠A=∠CDA=50°∴∠ACB=180°-∠A-∠B=105°故选D.【点睛】此题考查的是用尺规作图作垂直平分线、垂直平分线的性质、等腰三角形的性质、三角形的内角和定理和三角形外角的性质,掌握线段垂直平分线的做法、垂直平分线的性质、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.二、填空题(每题4分,共24分)13、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.14、(3,1)【解析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.15、xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)=xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.16、.【解析】已知等式整理得:,即则原式故答案为17、145°【分析】根据三角形外角性质求出,,代入求出即可.【详解】解:,,,,,故答案为:.【点睛】本题考查了三角形的外角性质,能熟记三角形外角性质的内容是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.18、【分析】先把代数式利用整式乘法进行化简,然后利用整体代入法进行解题,即可得到答案.【详解】解:=,∵,∴,∴原式===;故答案为:.【点睛】本题考查了整式的化简求值,整式的加减混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题.三、解答题(共78分)19、【解析】连接BD,则可以计算△ABD的面积,根据AB、BD可以计算BD的长,根据CD,BC,BD可以判定△BCD为直角三角形,根据BC,BD可以计算△BCD的面积,四边形ABCD的面积为△ABD和△BCD面积之和.【详解】解:连接BD,在直角△ABD中,AC为斜边,且AB=BC=2,AD=1则BD==,,∴BC2+BD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABD+S△BCD=AB×AD+BD×BC=.=1+答:四边形ABCD的面积为1+.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了勾股定理的逆定理的运用,考查了直角三角形面积计算,本题中求证△BCD是直角三角形是解题的关键.20、(1)见解析;(2),见解析【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;
(2)结论:.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题.【详解】(1)∵,∴,又∵,∴,在△ABD和△ACE中,,∴△ABD≌△ACE;(2),理由如下:连接FE,∵,∴,由(1)知△ABD≌△ACE,∴,,∴,∴,∴,∵AF平分,∴,在△DAF和△EAF中,,∴△DAF≌△EAF,∴.∴.【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、1.【分析】设现在平均每名邮递员每天分拣x件包裹,则原来每名快递员每天分拣(x-60)件,根据现在分拣550件包裹所需要的时间与原来分拣350件包裹所需时间相同,列出方程即可求解.【详解】解:设现在平均每名邮递员每天分拣x件包裹解得:检验:将代入原方程,方程左边等于右边,所以是原方程的解答:现在平均每名邮递员每天分拣1个包裹.【点睛】本题主要考查的是分式方程的实际应用,根据题目条件列出方程并正确求解是解此题的关键.22、(1)证明见解析(2)成立,证明见解析.【分析】(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【详解】(1)∵∠MAN=120°,AC平分∠MAN.∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD,Rt△ACB中,∠DCA=30°∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论①DC=BC;②AD+AB=AC都成立,理由:如图,在AN上截取AE=AC,连结CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.23、(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;(2)同理证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;【详解】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.24、见解析【分析】方法1,利用等腰三角形的性质以及三角形内角和定理,即可得到∠ABC=2∠ACD.方法2,作BE⊥CD,垂足为点E.利用等腰三角形的性质以及同角的余角相等,即可得出∠ABC=2∠ACD.方法3,作CF⊥AB,垂足为点F.利用等腰三角形的性质以及三角形外角性质,即可得到∠ACF=2∠ACD,再根据同角的余角相等,即可得到∠B=∠ACF,进而得出∠B=2∠ACD.【详解】方法1:如图,∵∠ACB=90°,∴∠BCD=90°-∠ACD,又∵BC=BD,∴∠BCD=∠BDC,∴△BCD中,∠ABC=180°-∠BDC-∠BCD=180°-2∠BCD=180°-2(90°-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液压课程设计速度负载图
- 特色长幅画卷课程设计
- 火柴数学课程设计
- 法律生活课程设计
- 2024年北师大版必修3地理上册月考试卷184
- 2024年鲁教版七年级语文上册月考试卷719
- 2024年中图版选择性必修2历史上册月考试卷542
- 2024年人教版PEP必修2生物上册月考试卷845
- 2024年沪教版九年级地理下册阶段测试试卷502
- 2024年岳麓版二年级语文下册月考试卷450
- 分布式光伏场站管理制度-运行管理
- 初中数学培优补差总结3篇
- 医疗救护合作协议
- 开题报告:数智技术赋能的师范生深度学习过程画像与实践路径优化研究
- 第六单元《质量与密度》3.密度的测量(分层训练)(解析版)
- 《无人机飞行操控技术(微课版)》全套教学课件
- 2023-2024学年广东省深圳高级中学七年级(上)期末历史试卷
- 病例封存应急预案
- GB/T 44800-2024太阳能光热发电站储热/传热用工作介质技术要求熔融盐
- 数据分析师历年考试真题试题库(含答案)
- 2024年人教版初二道德与法治上册期末考试卷(附答案)
评论
0/150
提交评论