2025届湖南省株洲市名校数学八上期末考试试题含解析_第1页
2025届湖南省株洲市名校数学八上期末考试试题含解析_第2页
2025届湖南省株洲市名校数学八上期末考试试题含解析_第3页
2025届湖南省株洲市名校数学八上期末考试试题含解析_第4页
2025届湖南省株洲市名校数学八上期末考试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省株洲市名校数学八上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.102.下列坐标系表示的点在第四象限的是()A. B. C. D.3.下列图形选自历届世博会会徽,其中是轴对称图形的是()A. B.C. D.4.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠25.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤36.等于()A.2 B.-2 C.1 D.07.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.78.下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±49.有一张三角形纸片ABC,已知∠B=∠C=α,按下列方案用剪刀沿着箭头方向剪开,所剪下的三角形纸片不一定是全等图形的是()A. B.C. D.10.下列各式中,计算正确的是()A. B. C. D.11.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.412.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月二、填空题(每题4分,共24分)13.如图,六边形是轴对称图形,所在的直线是它的对称轴,若,则的大小是__________.14.若分式在实数范围内有意义,则x的取值范围是______.15.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.16.已知a+b=3,ab=1,则a2+b2=____________.17.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.18.把命题“三角形内角和等于180°”改写成如果,那么.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象为直线1.(1)观察与探究已知点与,点与分别关于直线对称,其位置和坐标如图所示.请在图中标出关于线的对称点的位置,并写出的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点关于直线的对称点的坐标为______.(3)运用与拓展已知两点、,试在直线上作出点,使点到、点的距离之和最小,并求出相应的最小值.20.(8分)已知关于x的一元二次方程x2﹣(k+3)x+3k=1.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.21.(8分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)22.(10分)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.23.(10分)(1)(2)解方程组:24.(10分)欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.式子中的a、b的值各是多少?请计算出原题的正确答案.25.(12分)如图,在等边中,点,分别是,上的动点,且,交于点.(1)如图1,求证;(2)点是边的中点,连接,.①如图2,若点,,三点共线,则与的数量关系是;②若点,,三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.26.是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.2、C【分析】根据平面直角坐标系中各象限点的特点逐项判断即可.【详解】解:A.在x轴上,不合题意;B.在第一象限,不合题意;C.在第四象限,符合题意;D.在第二象限,不合题意.故选:C【点睛】本题考查了平面直角坐标系各象限点的特征,熟练掌握平面直角坐标各象限点的符号特点是解题关键.3、B【解析】A、不是轴对称图形,故此选项错误;

B、是轴对称图形,故此选项正确;

C、不是轴对称图形,故此选项错误;

D、不是轴对称图形,故此选项错误;

故选B.4、B【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【详解】解:二次根式在实数范围内有意义,,解得:.故选:B.【点睛】本题主要考查了二次根式有意义的条件,正确把握定义是解题关键.5、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.6、C【解析】根据任何非0数的0次幂都等于1即可得出结论.【详解】解:故选C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.7、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.8、B【分析】根据平方根和算术平方根的知识点进行解答得到答案.【详解】A.,错误;B.(﹣)2=2,正确;C.,错误;D.,错误;故选B.【点睛】本题主要考查二次根式的性质与化简,仔细检查是关键.9、D【分析】根据全等三角形的判定定理进行判断即可.【详解】A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,∵BD=CE=3是对应边,由AAS判定两个小三角形全等,故本选项不符合题意;D、如图2,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;故选D.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.10、C【解析】根据平方根、立方根的运算及性质逐个判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误,故答案为:C.【点睛】本题考查了平方根、立方根的运算及性质,解题的关键是熟记运算性质.11、D【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.12、C【解析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;

B、∵58出现的次数最多,是2次,

∴众数为:58,故本选项错误;

C、中位数为:(58+58)÷2=58,故本选项正确;

D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;

故选C.二、填空题(每题4分,共24分)13、300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC,∠BCF=∠DCF,再根据题目条件∠AFC+∠BCF=150°,可得到∠AFE+∠BCD的度数.【详解】解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∴∠AFC=∠EFC,∠BCF=∠DCF,∵∠AFC+∠BCF=150°,∴∠AFE+∠BCD=150°×2=300°,故答案为:300°.【点睛】此题主要考查了轴对称的性质,关键是掌握轴对称图形的对称轴两边的图形能完全重合.14、x≠-2【解析】根据分式有意义的条件进行求解即可.【详解】由题意得:x+2≠0,解得:x≠-2,故答案为:x≠-2.【点睛】本题考查了分式有意义的条件,熟知“分式的分母不为0”时分式有意义是解题的关键.15、3【解析】根据角平分线的作法可知,AD是∠BAC的平分线,再根据角平分线上的点到角的两边距离相等,即可求解.【详解】根据作图的过程可知,AD是∠BAC的平分线.根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.故答案为:3.【点睛】本题考查的知识点是基本作图,解题关键是掌握角平分线的做法和线段垂直平分线的判定定理.16、7【解析】试题解析:故答案为7.17、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.18、有一个三角形的三个内角;它们和等于180°【解析】试题分析:这个题是考察命题的定义的理解,所以知道题设和结论就可以写出.考点:命题的定义,定理三、解答题(共78分)19、(1)(3,-2);(2)(n,m);(3)图见解析,点到、点的距离之和最小值为【分析】(1)根据题意和图形可以写出的坐标;(2)根据图形可以直接写出点P关于直线l的对称点的坐标;(3)作点E关于直线l的对称点,连接F,根据最短路径问题解答.【详解】(1)如图,的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点关于直线的对称点的坐标为(n,m),故答案为(n,m);(3)点E关于直线l的对称点为(-3,2),连接F角直线l于一点即为点Q,此时点到、点的距离之和最小,即为线段F,∵F,∴点到、点的距离之和最小值为.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.20、(1)证明见解析;(2)8或2.【解析】(1)求出根的判别式,利用偶乘方的非负数证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.证明:(1)∵△=(k+3)2-12k=(k-3)2≥1,

∴不论k取何实数,方程总有实根;(2)当△ABC的底边长为2时,方程有两个相等的实数根,则(k-3)2=1,解得k=3,方程x2-6x+9=1,解得x1=x2=3,故三角形ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2-5x+6=1,解得x1=2,x2=3,故△ABC的周长为:2+2+3=2.故答案为2或8.“点睛”本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程总有实数根应根据判别式来做,两根互为相反数应根据根与系数的关系做,等腰三角形的周长应注意两种情况,以及两种情况的取舍.21、见解析【解析】根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可【详解】【点睛】考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.22、(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;

(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;

(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:数量关系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,

∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,

∴∠ABD=∠CAE,

在△ABD和△CAE中,∴△ABD≌△CAE(AAS)

∴AE=BD,AD=CE,

∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,

由(1)可知,△AEC≌△CFB,

∴CF=AE=3,BF=CE=OE-OC=4,

∴OF=CF-OC=1,

∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.23、(1);(2)【分析】(1)先化简二次根式,再进行加减运算即可;(2)利用加减消元法解方程组即可.【详解】(1)原式=(2)①×2+②×3得,解得将代入①中,得所以方程组的解为【点睛】本题主要考查二次根式的加减运算及解二元一次方程组,掌握二次根式的化简和加减消元法是解题的关键.24、(1),;(2)

【分析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.【详解】根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【点睛】本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.25、(1)证明过程见详解;(2)①;②结论成立,证明见详解【分析】(1)先证明,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP(SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以∵,∴,∴,在四边形AEPD中,∵,∴,∴,∴;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.26、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取,连接,

在等边△ABC中,

AC=AB,∠BAC=60°

由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,

设∠EAC=∠DAE=x.

∵AD=AC=AB,

∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,

∴∠AEB=60-x+x=60°.

∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论