版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京二中学教育集团2025届数学八年级第一学期期末联考试题联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将点向上平移3个单位长度,再向左平移2个单位长度,得到点,则点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5 B.1 C.1.5 D.23.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.4.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形 B.对角线互相平分的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形 D.两组对边分别相等的四边形是平行四边形5.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,36.下列运算正确的是()A. B. C. D.7.如果一次函数的图象经过第二第四象限,且与x轴正半轴相交,那么()A. B. C. D.8.已知,则的值为()A.7 B.C. D.9.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.10.下列等式中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.点A(﹣3,2)关于y轴的对称点坐标是_____.12.如图所示,,,,,则的长为__________.13.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.14.16的平方根是.15.观察下列各等式:,,,…根据你发现的规律,计算:____.(为正整数)16.已知多项式是关于的完全平方式,则________.17.实数P在数轴上的位置如图所示,化简+=________.18.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).三、解答题(共66分)19.(10分)为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)租车公司目前B型车只有6辆,若A型车租金为1800元/辆,B型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.20.(6分)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长21.(6分)已知:如图,四边形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,点E在BC上,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.(1)求线段DC的长度;(2)求△FED的面积.22.(8分)父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?23.(8分)如图,在中,,,平分,,求证:24.(8分)甲、乙两家园林公司承接了某项园林绿化工程,知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的倍,如果甲公司先单独工作天,再由乙公司单独工作天,这样恰好完成整个工程的.求甲、乙两公司单独完成这项工程各需多少天?25.(10分)分解因式:(1)ax2﹣9a;(2)4ab2﹣4a2b﹣b1.26.(10分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出点B的坐标,从而判断出所在的象限.【详解】解:∵将点向上平移3个单位长度,再向左平移2个单位长度,得到点∴点B的坐标为∴点B在第二象限故选B.【点睛】此题考查的是平面直角坐标系中点的平移,掌握点的坐标平移规律:横坐标左减右加,纵坐标上加下减是解决此题的关键.2、B【分析】过点A作AE⊥BC,得到E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,求出BE=,进而求出DE=-2=,即可求CD.【详解】过点A作AE⊥BC.∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=.∵BD=2,∴DE=﹣2=,∴CD=1.故选:B.【点睛】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.3、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、B【分析】根据尺规作图可知AC,BD互相平分,即可判断.【详解】根据尺规作图可得直线垂直平分AC,再可得到AC,BD互相平分,故选B.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知尺规作图的特点.5、A【分析】根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.6、C【分析】由负整数指数幂的运算法则可以得到答案.【详解】解:所以A,B,D错误;C正确.故选C.【点睛】本题考查的是负整数指数幂的运算,熟悉负整数指数幂的运算法则是关键.7、C【分析】根据一次函数的性质,即可判断k、b的范围.【详解】解:∵一次函数的图象经过第二第四象限,∴,∵直线与x轴正半轴相交,∴,∴;故选择:C.【点睛】本题考查了一次函数的图形和性质,解题的关键是根据直线所经过的象限,正确判断k、b的取值范围.8、C【分析】根据得到,代入计算即可.【详解】∵,∴,∴,故选:C.【点睛】此题考查分式的化简求值,利用已知条件求出是解题的关键.9、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【点睛】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.10、B【分析】根据分式化简依次判断即可.【详解】A、,故A选项错误;B、,故B选项正确;C、,故C选项错误;D、,故D选项错误;故选B.【点睛】本题是对分式化简的考查,熟练掌握分式运算是解决本题的关键.二、填空题(每小题3分,共24分)11、(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A(﹣3,2)关于y轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12、20【分析】在Rt△ABC中根据勾股定理求出AB的长,再求出BD的长即可.【详解】解:∵∠ABC=90°,AC=13,BC=5,∴AB===12,∵∠BAD=90°,AD=16,
∴BD===20.故答案为:20.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:
①当5和12为直角边长时,
由勾股定理得:第三边长的平方,即斜边长的平方;
②12为斜边长时,
由勾股定理得:第三边长的平方;
综上所述:第三边长的平方是169或1;
故答案为:169或1.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.14、±1.【详解】由(±1)2=16,可得16的平方根是±1.15、【分析】分析题中所给规律即可计算得到结果.【详解】解:∵,,∴,…∴原式=++…+==故答案为:【点睛】找得到规律:若左边分母中的两个因数的差是m,则右边应乘以(m为整数).16、15或【分析】根据完全平方公式的形式计算即可.【详解】∵是一个完全平方式,∴=±1×1x×3y,∴15或.故答案为:15或.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a1+1ab+b1和a1-1ab+b1.17、1【解析】根据图得:1<p<2,+=p-1+2-p=1.18、【分析】利用等边三角形的性质和特殊角去解题.【详解】解:等边三角形的周长为1,作于点,的周长=的周长=,的周长分别为故答案为:【点睛】本题考查等边三角形的性质以及规律性问题的解答.三、解答题(共66分)19、(1)每辆A型车有45个座位,每辆B型车有60个座位;(2)租4辆A型车、4辆B型车所需租金最少【分析】(1)设每辆A型车有x个座位,每辆B型车有y个座位,根据“若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租m辆A型车,n辆B型车,根据所租车辆的座位恰好坐满,即可得出关于m,n的二元一次方程,结合m,n为非负整数且n≤6,即可得出各租车方案,再求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设每辆型车有个座位,每辆型车有个座位,依题意,得:,解得:.答:每辆型车有45个座位,每辆型车有60个座位.(2)设租辆型车,辆型车,依题意,得:,.,均为非负整数,当时,,,不合题意,舍去;当时,;当时,,共有两种租车方案,方案1:租4辆型车,4辆型车;方案2:租8辆型车,1辆型车.方案1所需费用为(元;方案2所需费用为(元.,组4辆型车、4辆型车所需租金最少.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.20、(1)40;9;(2)见详解;(3)3.1【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=131°,∴∠B+∠C=41°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=41°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.1.【点睛】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1)5;(2)【分析】(1)通过证明四边形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的长.(2)由折叠的性质可得EF=CE,DC=DF=5,由“HL“可证Rt△ADF≌Rt△MDC,可得AF=CM=3,由勾股定理可求EC的长,即可求解.【详解】解:(1)过点D作DM⊥BC于M.∵AD∥BC,∠B=90°,∴∠A=90°,且∠B=90°,DM⊥BC,∴四边形ABMD是矩形,且AD=AB,∴四边形ABMD是正方形.∴DM=BM=AB=4,CM=3,在Rt△DMC中,CD===5,(2)∵将△CDE沿DE折叠,∴EF=CE,DC=DF=5,且AD=DM,∴Rt△ADF≌Rt△MDC(HL),∴AF=CM=3,∴BF=1,∵EF2=BF2+BE2,∴CE2=1+(7-CE)2,∴CE=∴S△FED=×CE×DM=×=【点睛】本题考查了折叠的性质,正方形的判定,全等三角形的判定和性质,勾股定理,求出DM的长是本题的关键.22、第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤【分析】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,根据题中给出已知条件,找到等量关系列出二元一次方程组,解方程组即可求解.【详解】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,依题意得:解得第一次弟弟分到:(斤)第二次哥哥分到:(斤)∴第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤故答案为:第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤.【点睛】本题考查了二元一次方程组的实际应用,找到题中等量关系列出方程组是解题的关键.23、详见解析【分析】根据题意分别延长CE、BA,并交于F点,由BE平分∠ABC,CE⊥BE,得到△BCF为等腰三角形,FC=2EC;易证得Rt△ABD≌Rt△ACF,则根据全等三角形的性质,BD=CF,进而分析即可得到结论.【详解】解:证明:分别延长,并交于点,如图:平分,为等腰三角形,三线合一可知E为FC的中点即,,,而,,,∵,∴.【点睛】本题考查等腰三角形的判定与性质以及三角形全等的判定与性质,熟练掌握等腰三角形三线合一的性质即等腰三角形底边上的高,中线和顶角的角平分线三线合一.24、甲公司单独30天完成,乙公司单独完成此工程的天数为45天.【分析】根据题意,设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,通过等量关系式列方程求解即可.【详解】设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,得,解得:.经检验,是原方程的解.则.答:甲、乙两公司单独完成这项工程分别需30天,45天.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用:云计算服务合同
- 2024年广告代理发布协议
- 2024年展览馆租赁合同模板
- 2024广告承揽合同协议书
- 2024照顾老人保姆合同格式
- 2024-2025学年新教材高中数学课时素养评价十第一章空间向量与立体几何1.2.5空间中的距离含解析新人教B版选择性必修第一册
- 2024年高考生物一轮复习第38讲细胞工程跟踪练含解析
- 九年级化学上册第二单元我们周围的空气实验活动1氧气的实验室制取与性质练习新版新人教版
- 河南省许平汝名校2024−2025学年高三上学期10月期中考试 数学试题含答案
- 2024年人工智能研发与运用承包合作协议
- 监控施工方案四篇
- 2023年全国中小学思政课教师网络培训研修总结心得体会
- 《走进芭蕾-中外芭蕾经典作品鉴赏》学习通超星课后章节答案期末考试题库2023年
- 口腔修复学:全口义齿课件
- 紫金矿业污染事件商业伦理分析
- 宫颈及阴道上药的护理(妇产科护理课件)
- 人教精通版英语五上Unit5《Isthisyourschoolbag》教案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题精华集选附答案
- 中小学教师教育教学水平能力测试成绩单
- 互联网医院整体方案介绍-PPT
- 4.2.1指数函数的概念 课件(共21张PPT)
评论
0/150
提交评论