北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题含解析_第1页
北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题含解析_第2页
北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题含解析_第3页
北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题含解析_第4页
北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市门头沟区名校2025届数学八年级第一学期期末教学质量检测模拟试题检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在式子,,,,,中,分式的个数有()A.2 B.3 C.4 D.52.如图所示的图案中,是轴对称图形且有两条对称轴的是()A. B. C. D.3.将下列多项式分解因式,结果中不含因式的是A. B.C. D.4.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EF B.假定CD不平行于EFC.已知AB∥EF D.假定AB不平行于EF5.若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣ D.6.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,···,按这样的运动规律,经过第次运动后,动点的坐标是()A. B. C. D.7.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.58.无论取什么数,总有意义的分式是()A. B. C. D.9.已知实数在数轴上对应的点如图所示,则的值等于()A.2a+1 B.-1 C.1 D.-2a-110.下列代数式,,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个11.某学校计划挖一条长为米的供热管道,开工后每天比原计划多挖米,结果提前天完成.若设原计划每天挖米,那么下面所列方程正确的是()A. B.C. D.12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=().A.60° B.80° C.70° D.50°二、填空题(每题4分,共24分)13._______14.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.15.已知:如图,,点为内部一点,点关于的对称点的连线交于两点,连接,若,则的周长=__________.16.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=_______________.17.已知一次函数的图象经过点A(2,-1)和点B,其中点B是另一条直线与y轴的交点,求这个一次函数的表达式___________18.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.三、解答题(共78分)19.(8分)计算:(1)4(x﹣1)2﹣(2x+5)(2x﹣5);(2).20.(8分)某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有A、B两种品牌学具可供选择已知1套A学具和1套B学具的售价为45元;2套A学具和5套B学具的售价为150元.、B两种学具每套的售价分别是多少元?现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a套且不超过30套,购买A、B两种型号的学具共花费w元.请写出w与a的函数关系式;请帮忙设计最省钱的购买方案,并求出所需费用.21.(8分)在平面直角坐标系中,的三个顶点的坐标分别为,与关于轴对称,与与与对应.(1)在平面直角坐标系中画出;(2)在平面直角坐标系中作出,并写出的坐标.22.(10分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?23.(10分)计算与化简求值(1)计算:(2)先化简,再求值:,其中x=224.(10分)如图,已知,依据作图痕迹回答下面的问题:(1)和的位置关系是_________________;(2)若,时,求的周长;(3)若,,求的度数.25.(12分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?26.下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.

参考答案一、选择题(每题4分,共48分)1、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:分式有:,,共3个.

故选B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2、D【详解】选项A、B中的图形是轴对称图形,只有1条对称轴;选项C中的图形不是轴对称图形;选项D中的图形是轴对称图形,有2条对称轴.故选D.3、D【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【详解】A、x2-1=(x+1)(x-1),故A选项不合题意;

B、=(x-1)x,故B选项不合题意;

C、x2-2x+1=(x-1)2,故C选项不合题意;

D、x2+2x+1=(x+1)2,故D选项符合题意.

故选:D.【点睛】此题考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.4、B【解析】根据要证CD∥EF,直接假设CD不平行于EF即可得出.【详解】解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.∴证明的第一步应是:从结论反面出发,假设CD不平行于EF.故选B.点评:此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键.5、B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【详解】∵a+b=5,∴原式故选:B.【点睛】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、B【分析】观察可得点P的变化规律,“(n为自然数)”,由此即可得出结论.【详解】观察,,发现规律:(n为自然数).∵∴点的坐标为.故选:B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“(n为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.7、C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【详解】若腰长为3,则底边长为此时三边长为3,3,10∵,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C.【点睛】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.8、B【分析】根据分式有意义的条件,分别进行判断,即可得到答案.【详解】解:A、当时,无意义,故A错误;B、∵,则总有意义,故B正确;C、当时,无意义,故C错误;D、当时,无意义,故D错误;故选:B.【点睛】本题考查了分式有意义的条件,分式无意义的条件,解题的关键是熟练掌握分母不等于0,则分式有意义.9、D【解析】先根据数轴判断出a和a+1的正负,然后根据二次根式的性质化简,再合并同类项即可.【详解】由数轴可知,a<0,a+1>0,∴=-a-(a+1)=-a-a-1=-2a-1.故选D.【点睛】本题考查了利用数轴比较式子的大小及二次根式的化简,熟练掌握二次根式的性质是解答本题的关键.10、C【分析】根据分式的定义进行判断即可得解.【详解】解:∵代数式中是分式的有:,,∴有个分式.故选:C【点睛】本题考查了分式的定义,能根据分式的定义进行判断是解题的关键.11、A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:;实际所有时间:.提前10天完成,即.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.12、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP=20°,∠ACP=50°,

∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,

∴∠A=∠ACM-∠ABC=60°故选A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角,难度适中.二、填空题(每题4分,共24分)13、【分析】根据幂的运算法则即可求解.【详解】故答案为:.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.14、(2,).【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×=2,点C到AB的距离为=,∴C(2,+1),把等边△ABC先沿y轴翻折,得C’(-2,+1),再向下平移1个单位得C’’(-2,)故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,纵坐标为+1﹣2020=﹣2019,所以,点C的对应点C'的坐标是(2,﹣2019).故答案为:(2,﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.15、【分析】连接OP1,OP2,利用对称的性质得出OP=OP1=OP2=2,再证明△OP1P2是等腰直角三角形,则△PMN的周长转化成P1P2的长即可.【详解】解:如图,连接OP1,OP2,∵OP=2,根据轴对称的性质可得:OP=OP1=OP2=2,PN=P2N,PM=P1M,∠BOP=∠BOP2,∠AOP=∠AOP1,∵∠AOB=45°,∴∠P1OP2=90°,即△OP1P2是等腰直角三角形,∵PN=P2N,PM=P1M,∴△PMN的周长=P1M+P2N+MN=P1P2,∵P1P2=OP1=.故答案为:.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.16、1或1【解析】∵一组数据2,3,4,5,x的方差与另一组数据5,1,7,8,9的方差相等,

∴这组数据可能是2,3,4,5,1或1,2,3,4,5,

∴x=1或1,

故答案是:1或1.17、y=-2x+1【分析】利用一次函数图象上点的坐标特征可求出点B的坐标,再根据点A、B的坐标,利用待定系数法即可求出该一次函数的表达式.【详解】解:当x=0时,=1,∴点B的坐标为(0,1).

设这个一次函数的表达式为y=kx+b(k≠0),

将点A(2,-1)、B(0,1)代入y=kx+b,,解得:,∴该一次函数的表达式y=-2x+1.故答案为:y=-2x+1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出点B的坐标是解题的关键.18、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,

∴∠BDC=90°-60°=30°,

∴BD=2BC=2×4=1,

∵∠C=90°,∠A=15°,

∴∠ABC=90°-15°=75°,

∴∠ABD=∠ABC-∠DBC=75°-60°=15°,

∴∠ABD=∠A,

∴AD=BD=1.

故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.三、解答题(共78分)19、(1)﹣8x+29;(2)【分析】(1)根据整式的乘除进行去括号,然后合并同类项,即可得出答案.(2)根据积的乘方进行去括号,然后根据分式的混合运算进行化简,即可得出答案.【详解】解:(1)原式=4x2﹣8x+4﹣4x2+25=﹣8x+29;(2)原式=【点睛】本题主要考察了整式的乘除、积的乘方以及分式的混合运算,正确运用法则进行运算是解题的关键.20、(1)A、B两种学具每套的售价分别是25和20元;(2),;购买45套B型学具所需费用最省钱,所需费用为900元.【解析】(1)设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据1套A学具和1套B学具的售价为45元,2套A学具和5套B学具的售价为150元,列出二元一次方程组解答即可;(2)①根据总花费=购买A型学具的费用+购买B型学具的费用,列出函数关系式即可;②分两种情况进行比较即可,第一种情况:由函数关系式可知a=30时花费已经最低,需要费用950元;第二种情况:购买45套B型学具需要900元.【详解】解:设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据题意有,,解之可得,所以A、B两种学具每套的售价分别是25和20元;因为,其中购买A型学具的数量为a,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w为最小值,即元;Ⅱ、由于受到购买A型学具数量的限制,购买A型学具30套w已是最小,所以全部购买B型学具45套,此时元元,综上所述,购买45套B型学具所需费用最省钱,所需费用为:900元.故答案为(1)A、B两种学具每套的售价分别是25和20元;(2)①w=-5a+1100,(20<a≤30);②购买45套B型学具所需费用最省钱,所需费用为900元.【点睛】本题考查了二元一次方程组和一次函数的应用.21、(1)详见解析;(2)图详见解详,【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D、E、F的坐标.【详解】(1)如图所示:(2)如图所示:【点睛】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.22、(1)A、80,B、1(2)19.【分析】(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,根据购买A、B两种品牌篮球的总费用不超过3200元,列出不等式解决问题.【详解】(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得,解得:x=80,经检验x=80是原方程的解,x+50=1.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需1元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+1×0.9a≤3200,解得a≤,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.【点睛】本题考查1、分式方程的应用;2、一元一次不等式的应用,能根据题意找出题中的等量或不等量关系并通过等量或不等量关系列出方程或不等式是解决本题的关键.23、(1);(2),【分析】(1)先进行积的乘方运算,再进行单项式除以单项式运算即可得到结果;(2)先把除法转化为乘法,进行约分后,再进行同分母的减法运算即可化简,再把x=-1代入化简结果进行计算即可.【详解】解:(1)==;(2)=把x=2代入上式,得,原式.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.24、(1)MN垂直平分AC;(2)8;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论