版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省泰州市高港区八年级数学第一学期期末考试模拟试题试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个3.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个4.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.55.下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a26.4的平方根是()A.4 B. C. D.27.下列曲线中不能表示y与x的函数的是()A. B. C. D.8.下列说法正确的有()①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数;A.1个 B.2个 C.3个 D.4个9.在直角坐标系中,已知点在直线上,则的值为()A. B. C. D.10.计算的结果是()A. B.2 C. D.4二、填空题(每小题3分,共24分)11.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.12.已知,则代数式的值为____________.13.如图,点在等边的边上,,射线,垂足为点,点是射线上一动点,点是线段上一动点,当的值最小时,,则的长为___________________.14.若分式的值为0,则x的值为_______.15.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.16.如图,已知A(3,0),B(0,﹣1),连接AB,过点B的垂线BC,使BC=BA,则点C坐标是_____.17.请写出一个到之间的无理数:_________.18.如图,在中,,,,点在上,将沿折叠,点落在点处,与相交于点,若,则的长是__________.三、解答题(共66分)19.(10分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答下列问题:(1)已知:如图,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:当∠A≠36°时,一些等腰三角形也具有这样的特性,即经过等腰三角形某一顶点的一条直线可以把该等腰三角形分成两个小等腰三角形.则∠A的度数为______(写出两个答案即可);并画出相应的具有这种特性的等腰三角形及分割线的示意图,并在图中标出两个小等腰三角形的各内角的度数.(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出两个小等腰三角形的各内角的度数.20.(6分)阅读下列材料,并解答总题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设则=∵对于任意上述等式成立∴,解得,∴这样,分式就拆分成一个整式与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为___________;(2)已知整数使分式的值为整数,则满足条件的整数=________.21.(6分)八(2)班分成甲、乙两组进行一分钟投篮测试,并规定得6分及以上为合格,得9分及以上为优秀,现两组学生的一次测试成绩统计如下表:成绩(分)456789甲组人数(人)125214乙组人数(人)114522(1)请你根据上表数据,把下面的统计表补充完整,并写出求甲组平均分的过程;统计量平均分方差众数中位数合格率优秀率甲组2.56680.0%26.7%乙组6.81.76786.7%13.3%(2)如果从投篮的稳定性角度进行评价,你认为哪组成绩更好?并说明理由;(3)小聪认为甲组成绩好于乙组,请你说出支持小聪观点的理由;22.(8分)如图,已知等边△ABC中,点D在BC边的延长线上,CE平分∠ACD,且CE=BD,判断△ADE的形状,并说明理由.23.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别是,,.(1)在图中,以轴为对称轴,作出的轴对称图形.(2)在图中,把平移使点平移到点,请作出平移后的,并直接写出点和点的坐标.24.(8分)如图,∠ABC=60°,∠1=∠1.(1)求∠3的度数;(1)若AD⊥BC,AF=6,求DF的长.25.(10分)我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如(1),与都是等腰三角形,其中,则△ABD≌△ACE(SAS).(1)熟悉模型:如(2),已知与都是等腰三角形,AB=AC,AD=AE,且,求证:;(2)运用模型:如(3),为等边内一点,且,求的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以为边构造等边,这样就有两个等边三角形共顶点,然后连结,通过转化的思想求出了的度数,则的度数为度;(3)深化模型:如(4),在四边形中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求的长.26.(10分)如图,平面直角坐标系中,点A在第四象限,点B在x轴正半轴上,在△OAB中,∠OAB=90°,AB=AO=6,点P为线段OA上一动点(点P不与点A和点O重合),过点P作OA的垂线交x轴于点C,以点C为正方形的一个顶点作正方形CDEF,使得点D在线段CB上,点E在线段AB上.(1)①求直线AB的函数表达式.②直接写出直线AO的函数表达式;(2)连接PF,在Rt△CPF中,∠CFP=90°时,请直接写出点P的坐标为;(3)在(2)的前提下,直线DP交y轴于点H,交CF于点K,在直线OA上存在点Q.使得△OHQ的面积与△PKE的面积相等,请直接写出点Q的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【详解】∵点的横坐标是负数,纵坐标是正数,
∴在平面直角坐标系的第二象限,
故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【详解】解:在实数,,,,中,其中,,是无理数.故选:B.3、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.4、A【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得SABC=SABP+SACP,代入数值,解答出即可.【详解】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=1,∴BF=4,∴△ABF中,AF=3,∴,12=×5×(PD+PE)PD+PE=4.1.故选A.【点睛】考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.5、B【解析】A选项错误,a3·a2=a5;B选项正确;C选项错误,(a+b)2=a2+2ab+b2;D选项错误,2a+3a=5a.故选B.点睛:熟记公式:(1)(an)m=amn,(2)am·an=am+n,(3)(a±b)2=a2±2ab+b2.6、C【分析】根据平方根的性质,正数有两个平方根且互为相反数,开方求解即可.【详解】∵一个正数有两个平方根且互为相反数∴4的平方根是故选:C.【点睛】本题主要考查平方根的性质,熟知一个正数有两个平方根并互为相反数是解题的关键,区分平方根与算术平方根是易错点.7、C【解析】函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.【详解】当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.【点睛】函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。8、B【分析】根据无理数的定义即可作出判断.【详解】无理数是无限不循环小数,故①正确,②错误;开方开不尽的数是无理数,则③正确;是有理数,故④错误;是无理数,故⑤错误;正确的是:①③;故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9、D【分析】根据题意,将点代入直线中即可的到的值.【详解】将点代入直线中得:,故选:D.【点睛】本题主要考查了由直线解析式求点坐标的相关知识,熟练掌握代入法求未知点的坐标是解决本题的关键.10、B【分析】根据算术平方根的概念,求4的算术平方根即可.【详解】解:=2故选:B.【点睛】本题考查算术平方根,掌握概念正确理解题意是解题关键.二、填空题(每小题3分,共24分)11、161【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】平均数为,因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为,则它的中位数是1,故答案为:1,6,1.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.12、-2【分析】先把代数式﹣1a1+2ab﹣2b1进行因式分解,再把a﹣1b=﹣1整体代入即可.【详解】﹣1a1+2ab﹣2b1=﹣1(a1﹣4ab+4b1)=﹣1(a﹣1b)1.∵a﹣1b=﹣1,∴原式=﹣1×(﹣1)1=﹣2.故答案为:﹣2.【点睛】本题考查了因式分解的应用,掌握因式分解的各种方法以及整体思想是解答本题的关键.13、1【分析】作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,根据对称性可得MP=M1P,MC=M1C,然后根据垂线段最短即可证出此时最小,然后根据等边三角形的性质可得AC=BC,∠B=60°,利用30°所对的直角边是斜边的一半即可求出BM1,然后求出BC即可求出AC.【详解】解:作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,如下图所示根据对称性质可知:MP=M1P,MC=M1C此时=M1P+NP=M1N,根据垂线段最短可得此时最小,且最小值为M1N的长∵△ABC为等边三角形∴AC=BC,∠B=60°∴∠M1=90°-∠B=30°∵,当的值最小时,,∴在Rt△BM1N中,BM1=2BN=18∴MM1=BM1-BM=10∴MC=M1C=MM1=5∴BC=BM+MC=1故答案为:1.【点睛】此题考查的是垂线段最短的应用、等边三角形的性质和直角三角形的性质,掌握垂线段最短、等边三角形的性质和30°所对的直角边是斜边的一半是解决此题的关键.14、-1【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-1.
故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.15、87.5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=(分).故答案为:87.5分.【点睛】本题考查了加权平均数的求法.熟记公式:是解决本题的关键.16、C(1,﹣4)【分析】过点作CE⊥y轴于E,证明△AOB≌△BEC(AAS),得出OA=BE,OB=CE,再求出OA=3,OB=1,即可得出结论;【详解】解:如图,过点作CE⊥y轴于E,∴∠BEC=90°,∴∠BCE+∠CBE=90°,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∴∠ABO=∠BCE,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OA=BE,OB=CE,∵A(3,0),B(0,﹣1),∴OA=3,OB=1,∴CE=1,BE=3,∴OE=OB+BE=4,∴C(1,﹣4).【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,坐标与图形,余角的性质等知识,构造出全等三角形是解本题的关键.17、.(答案不唯一)【分析】答案不唯一,根据无理数的定义写出一个符合条件的无理数即可.【详解】解:解:∵=,=,∴到之间的无理数有,
故答案为:.(答案不唯一)【点睛】本题考查估算无理数的大小,注意理解无理数的定义,根据定义写出满足条件的数即可.可以写带根号且开方开不尽的数,或写一些有规律的无限不循环小数.18、【分析】利用平行线的性质及折叠的性质得到,即AB⊥CE,再根据勾股定理求出,再利用面积法求出CE.【详解】∵,∴,由折叠得:,∵,∴,∴,∴AB⊥CE,∵,,,∴,∵,∴,∴CE=,∴,∵,∴,∴,故答案为:.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB⊥CE是解题的关键.三、解答题(共66分)19、(1)见解析;(2)90°或108°或;(3)见解析【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°则可得AD=BD=CB∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形.【详解】(1)证明:在△ABC中,∵AB=AC,∠A=36°∴∠ABC=∠C=(180°-∠A)=72°∵BD平分∠ABC,∴∠1=∠2=36°∴∠1=∠A∴AD=BD∴△ABD是等腰三角形∵∠BDC=∠1+∠A=72°∴∠BDC=∠C=72°∴BD=BC,∴△BDC是等腰三角形(2)如下图所示:∴顶角∠A的度数为90°或108°或,故答案为:90°或108°或;(3)如图所示.【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.20、(1);(2)4、16、2、-10【分析】(1)仿照例题,列出方程组,求出a、b的值,把原式拆分成一个整式与一个分式(分子为整数)的和的形式;
(2)仿照例题,列出方程组,求出a、b的值,把原式拆分成一个整式与一个分式(分子为整数)的和的形式,根据整除运算解答;【详解】解:(1)由分母x-1,可设x2+6x-3=(x-1)(x+a)+b
则x2+6x-3=(x-1)(x+a)+b=x2+ax-x-a+b=x2+(a-1)x-a+b
∵对于任意x上述等式成立,解得:,拆分成x+7+故答案为:x+7+(2)由分母x-3,可设2x2+5x-20=(x-3)(2x+a)+b
则2x2+5x-20=(x-3)(2x+a)+b=2x2+ax-6x-3a+b=2x2+(a-6)x-3a+b
∵对于任意x上述等式成立,,解得拆分成2x+11+∵整数使分式的值为整数,∴为整数,则满足条件的整数x=4、16、2、-10,
故答案为:4、16、2、-10;【点睛】本题考查的是分式的混合运算,掌握多项式乘多项式的运算法则、二元一次方程组的解法,读懂材料掌握方法是解题的关键.21、(1)6.8,6,7,求甲组平均分的过程见解析;(2)乙组的成绩更好,理由:乙组的方差小于甲组的方差,所以乙组的成绩稳定;(3)从优秀率看,甲组的成绩比乙组的成绩好【分析】(1)根据加权平均数,众数,中位数的定义求解即可;(2)根据方差越小成绩越稳定即可判断;(3)从优秀率看甲的成绩比乙的成绩好.【详解】解:(1)甲组的平均分==6.8(分),甲组得6分的人数最多,有5人,故众数为6分,将乙组的成绩按从小到大的顺序排序后,第8名的成绩为7分,故乙组的中位数是7分,故答案为:6.8,6,7;(2)乙组的成绩更好,理由:乙组的方差小于甲组的方差,所以乙组的成绩稳定;(3)从优秀率看,甲组的成绩比乙组的成绩好.【点睛】本题考查方差,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、△ADE是等边三角形,理由见解析【解析】先证明出△ABD≌△ACE,然后进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.【详解】△ADE是等边三角形,理由如下:∵△ABC是等边三角形,∴∠ACB=∠B=60°,AB=AC,∴∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,∵AB=AC,∠B=∠ACE,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠BAC+∠CAD=∠CAD+∠DAE又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.【点睛】本题主要考查了全等三角形的性质及判定与等边三角形性质及判定的综合运用,熟练掌握相关概念是解题关键.23、(1)画图见解析;(2)画图见解析,,【分析】(1)根据轴对称图形的性质画出;(2)点A平移到,是向上平移1个单位,向左平移3个单位,将B和O进行同样的平移.【详解】(1)即为所求.(2)即为所求,,.【点睛】本题考查画轴对称图形和图形的平移,解题的关键是掌握画轴对称图形的方法和图形平移的画法.24、(1)60°;(1)3【分析】(1)由三角形的外角性质,得到∠3=∠1+∠ABF,由∠1=∠1,得到∠3=∠ABC,即可得到答案;(1)由(1)∠3=∠ABC=60°,由AD⊥BC,则∠1=∠1=30°,则∠ABF=30°=∠1,则BF=AF=6,即可求出DF的长度.【详解】解:(1)根据题意,由三角形的外角性质,得∠3=∠1+∠ABF,∵∠1=∠1,∴∠3=∠1+∠ABF,∵∠ABC=∠ABF+∠1=60°,∴∠3=60°;(1)由(1)可知,∠3=60°,∵AD⊥BC,∴∠ADB=90°,∴∠1=30°,∴,∵∠3=∠1+∠ABF,∴∠ABF=30°,∵∠1=∠1=30°,∴∠ABF=∠1=30°,∴BF=AF=6,∴.【点睛】本题考查了30°直角三角形的性质,三角形的外角性质,以及等角对等边,解题的关键是熟练掌握所学的性质进行求解.25、(1)见解析;(2)150°;(3)【分析】(1)根据“SAS”证明△ABD≌△ACE即可;(2)根据小明的构造方法,通过证明△BAP≌△BMC,可证∠BPA=∠BMC,AP=CM,根据勾股定理的逆定理得到∠PMC=90°,于是得到结论;(3)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A逆时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.【详解】(1)∵,∴,在△ABD和△ACE中,∵,,AD=AE,∴△ABD≌△ACE,∴;(2)由小明的构造方法可得,BP=BM=PM,∠PBM=∠PMB=60°,∴∠ABP=∠CBM,又∵AB=BC,∴△BAP≌△BMC,∴∠BPA=∠BMC,AP=CM,∵,∴,设CM=3x,PM=4x,PC=5x,∵(5x)2=(3x)2+(4x)2,∴PC2=CM2+PM2,∴△PCM是直角三角形,∴∠PMC=90°,∴∠BPA=∠BMC=60°+90°=150°;(3)∵∠ACB=∠ABC=45°,∴∠BAC=90°,且AC=AB.将△ADB绕点A顺时针旋转90°,得到△ACE,∴AD=AE,∠DAE=90°,BD=CE.∴∠EDA=45°,DE=AD=4.∵∠ADC=45°,∴∠EDC=45°+45°=90°.在Rt△DCE中,利用勾股定理可得,CE=,∴BD=CE=.【点睛】本题综合考查了旋转的性质,等边三角形的性质,勾股定理及其逆定理,以及全等三角形的判定与性质等知识点.旋转变化前后,对应角、对应线段分别相等,图形的大小、形状都不变.26、(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)【分析】(1)①利用等腰直角三角形的性质可以得到点A和点B的坐标,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 百万医疗险销售
- 鸿门宴课件统编版
- 手指骨折的手术护理查房
- 二零二四年度股权激励合同标的及激励方案
- 锅炉执行标准课件
- 《酒店客人的类型》课件
- 二零二四年度化工企业并购合同3篇
- 2024年度知识产权许可合同模板:新型专利技术使用授权2篇
- 二零二四年度智能家居产品定制与安装合同3篇
- 物联网连接设备变革
- 污水处理厂运营管理制度及操作规程
- 建筑各消防系统的组成及功能
- 住院患者安全风险评估观察及防范护理措施
- 2023江苏省扬州市中考英语真题试卷和答案
- GB/T 10739-2023纸、纸板和纸浆试样处理和试验的标准大气条件
- 律师职业规划报告
- 初三全册单词
- DB37-T 3274.3-2023 日光温室建造技术规范 第3部分:山东VI型
- 多重耐药菌的预防与控制
- 内科医师规范化培训临床问诊检查操作考核评分标准汇编2023版
- 3.1细胞膜的结构和功能用
评论
0/150
提交评论