2025届河南周口港区数学八上期末统考模拟试题含解析_第1页
2025届河南周口港区数学八上期末统考模拟试题含解析_第2页
2025届河南周口港区数学八上期末统考模拟试题含解析_第3页
2025届河南周口港区数学八上期末统考模拟试题含解析_第4页
2025届河南周口港区数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南周口港区数学八上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2) B.(1,2) C.(1,﹣2) D.(﹣1,﹣2)2.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.53.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°4.已知,则的值为()A. B. C. D.5.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15° B.22.5° C.30° D.45°6.若三角形三个内角度数之比为2:3:7,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形7.如图,在中,,CD是高,BE平分∠ABC交CD于点E,EF∥AC交AB于点F,交BC于点G.在结论:(1);(2);(3);(4)中,一定成立的有()A.1个 B.2个 C.3个 D.4个8.如图,在中,,D是AB上的点,过点D作

交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③ B.①②④ C.②③④ D.①②③④9.若,则等于()A. B. C. D.10.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定11.下列各组数中,是方程2x-y=8的解的是()A. B. C. D.12.下列图标中是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,,则的长度为__________.14.已知方程2x2n﹣1﹣3y3m﹣n+1=0是二元一次方程,则m=_____,n=_____.15.分解因式:__________.16.在一个不透明的盒子中装有个球,它们有且只有颜色不同,其中红球有3个.每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.06,那么可以推算出的值大约是__________.17.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.18.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.三、解答题(共78分)19.(8分)阅读解答题:(几何概型)条件:如图1:是直线同旁的两个定点.问题:在直线上确定一点,使的值最小;方法:作点关于直线对称点,连接交于点,则,由“两点之间,线段最短”可知,点即为所求的点.(模型应用)如图2所示:两村在一条河的同侧,两村到河边的距离分别是千米,千米,千米,现要在河边上建造一水厂,向两村送水,铺设水管的工程费用为每千米20000元,请你在上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用.(拓展延伸)如图,中,点在边上,过作交于点,为上一个动点,连接,若最小,则点应该满足()(唯一选项正确)A.B.C.D.20.(8分)已知:如图,中,∠ABC=45°,于D,BE平分∠ABC,且于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由21.(8分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,这个函数的图象如图所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量.22.(10分)如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BE=CD.23.(10分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.24.(10分)先化简分式,然后从中选取一个你认为合适的整数代入求值.25.(12分)如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).26.因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)2

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点A(﹣1,2)关于x轴对称的点B的坐标是(﹣1,﹣2).故选D.2、D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3、C【分析】根据三角板可得:∠2=60°,∠5=45°,然后根据三角形内角和定理可得∠2的度数,进而得到∠4的度数,再根据三角形内角与外角的关系可得∠1的度数.【详解】解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°−90°−60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°,故选:C.【点睛】此题主要考查了三角形内角和定理,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4、A【分析】根据分式的加减运算法则即可求解.【详解】∵==∴=4故m+n=0,4m=4解得故选A.【点睛】此题主要考查分式运算的应用,解题的关键是熟知分式的加减运算法则.5、C【解析】试题解析:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.6、C【分析】根据三角形内角和180°来计算出最大的内角度数,然后来判断三角形的形状.【详解】解:三角形三个内角度数之比为2:3:7,三角形最大的内角为:.这个三角形一定为钝角三角形.故选:C.【点睛】本题主要考查三角形内角和180°,计算三角形最大内角是解题关键.7、B【分析】根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD;只有△ABC是等腰直角三角形时AD=CD,CG=EG;利用“角角边”证明△BCE和△BFE全等,然后根据全等三角形对应边相等可得BF=BC.【详解】∵EF∥AC,∠BCA=90°,∴∠CGE=∠BCA=90°,∴∠BCD+∠CEG=90°,又∵CD是高,∴∠EFD+∠FED=90°,∵∠CEG=∠FED(对顶角相等),∴∠EFD=∠BCD,故(1)正确;只有∠A=45°,即△ABC是等腰直角三角形时,AD=CD,CG=EG而立,故(2)(3)不一定成立,错误;∵BE平分∠ABC,∴∠EBC=∠EBF,在△BCE和△BFE中,,∴△BCE≌△BFE(AAS),∴BF=BC,故(4)正确,综上所述,正确的有(1)(4)共2个.故选:B.【点睛】本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.8、B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.9、A【分析】由题意根据同底数幂的除法即底数不变指数相减进行计算.【详解】解:.故选:A.【点睛】本题考查同底数幂的除法,掌握同底数幂的除法运算法则是解答本题的关键.10、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,

∵OP平分∠MON,PA⊥ON,PQ⊥OM,

∴PA=PQ,

∵∠AOP=∠MON=30°,

∴PA=2,

∴PQ=2.

故选:A.【点睛】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.11、C【分析】把各项中x与y的值代入方程检验即可.【详解】解:A、把代入方程左边得:2+2=4,右边=8,左边≠右边,故不是方程的解;

B、把代入方程左边得:4-0=4,右边=8,左边≠右边,故不是方程的解;

C、把代入方程左边得:1+7=8,右边=8,左边=右边,是方程的解;

D、把代入方程左边得:10+2=12,右边=8,左边≠右边,故不是方程的解,

故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12、D【解析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、不是轴对称图形,此项不符题意D、是轴对称图形,此项符合题意故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.二、填空题(每题4分,共24分)13、2cm【分析】根据全等三角形的对应边都相等,得到、的长,即可求出的长.【详解】解:故答案为:2cm.【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.14、1【分析】含有两个未知数,并且所含未知数的项的次数是都是1的方程是二元一次方程,根据定义解答即可.【详解】由题意得:2n-1=1,3m-n+1=1,解得n=1,,故答案为:,1.【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.15、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.16、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,,解得,,经检验n=1是方程的解,故估计n大约是1.

故答案为:1.【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.18、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【点睛】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共78分)19、【模型应用】图见解析,最省的铺设管道费用是10000元;【拓展延伸】D【分析】1.【模型应用】由于铺设水管的工程费用为每千米15000元,是一个定值,现在要在CD上选择水厂位置,使铺设水管的费用最省,意思是在CD上找一点P,使AP与BP的和最小,设是A的对称点,使AP+BP最短就是使最短.2.【拓展延伸】作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小,依据轴对称的性质即可得到∠APC=∠DPE.【详解】1.【模型应用】如图所示.延长到,使,连接交于点,点就是所选择的位置.过作交延长线于点,∵,∴四边形是矩形,∴,,在直角三角形中,,千米,∴最短路线千米,最省的铺设管道费用是(元).2.【拓展延伸】如图,作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小.

由对称性可知:∠DPE=∠FPD,

∵∠APC=∠FPD,

∴∠APC=∠DPE,

∴PA+PE最小时,点P应该满足∠APC=∠DPE,

故选:D.【点睛】本题主要考查了轴对称最短路径问题、对顶角的性质等知识,解这类问题的关键是将实际问题抽象或转化为几何模型,把两条线段的和转化为一条线段,多数情况要作点关于某直线的对称点.20、(1)证明见解析;(2),理由见解析【分析】(1)由题意可以得到Rt⊿DFB≅Rt⊿DAC,从而得到BF=AC;(2)由题意可以得到Rt⊿BEA≅Rt⊿BEC,所以.【详解】证明:∵CD⊥AB,∠ABC=45°,∴BCD是等腰直角三角形,∠DBF=90°-∠BFD,∠A=90°-∠DCA,又,∴∠EFC=90°-∠DCA,∴∠A=∠EFC∵∠BFD=∠EFC,∴∠A=∠DFB,∴在Rt⊿DFB和Rt⊿DAC中,∠BDF=∠CDA,∠A=∠DFB,BD=DC,∴Rt⊿DFB≅Rt⊿DAC,∴BF=AC;(2)理由是:∵BE平分ABC,∴∠ABE=∠CBE,在Rt⊿BEA和Rt⊿BEC中,∠AEB=∠CEB,BE=BE,∠ABE=∠CBE,∴Rt⊿BEA≅Rt⊿BEC,∴由(1)得:.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.21、(1)(2)【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【详解】解:(1)设y与x的函数表达式为y=kx+b,由题意可得:解得:∴(x>10);(2)当y=0,,∴x=10,∴旅客最多可免费携带行李的质量为10kg.【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.22、详见解析【分析】只要用全等判定“AAS”证明△ABE≌△ACD,则CD=BE易求.【详解】∵CD⊥AB于点D,BE⊥AC,∴∠AEB=∠ADC=90°,又∠A=∠A,AB=AC,∴△ABE≌△ACD(AAS).∴CD=BE.【点睛】本题重点考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.23、详见解析【解析】先根据,得出,故,可得,再由可知即可得到.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D,∴DF∥AC,∴∠A=∠F.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.24、,,(或x=3,-1)【分析】先化简分式,再代入满足条件的x值,算出即可.【详解】化简==,由题意得,当时,原式=当x=3时,原式=-1(求一个值即可)【点睛】本题是对分式化简的考查,熟练掌握分式化简是解决本题的关键.25、(1)①45°,理由见解析;②∠D的度数不变;理由见解析(2)30;(3)【分析】(1)①先求出∠ABN=150°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论