




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲成对数据的统计分析(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:成对数据的相关性题型二:回归分析角度1:经验回归方程及应用角度2:非线性经验回归方程及应用角度3:相关系数SKIPIF1<0角度4:残差分析题型三:列联表与独立性检验第四部分:高考真题感悟第一部分:知识点精准记忆第一部分:知识点精准记忆知识点一:变量的相关关系(1)两个变量有关系,但又没有确切到可由其中一个去精确地决定另一个的程度,这种关系称为相关关系.(2)正相关、负相关从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减小的趋势,则称这两个变量负相关.
(3)线性相关、非线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们就称这两个变量线性相关.
一般地,如果两个变量具有相关性,但不是线性相关,那么我们就称这两个变量非线性相关或曲线相关.知识点二:样本相关系数(1)相关系数SKIPIF1<0的计算变量SKIPIF1<0与变量SKIPIF1<0的样本相关系数SKIPIF1<0的计算公式如下:SKIPIF1<0(2)相关系数SKIPIF1<0的性质①当SKIPIF1<0时,称成对样本数据正相关;当SKIPIF1<0时,称成对样本数据负相关.当SKIPIF1<0时,成对样本数据间没有线性相关关系.②样本相关系数SKIPIF1<0的取值范围为SKIPIF1<0,当SKIPIF1<0越接近1时,成对样本数据的线性相关程度越强;当SKIPIF1<0越接近0时,成对样本数据的线性相关程度越弱.知识点三:一元线性回归模型(1)数学表述式:如果两个变量之间的关系可以表示为SKIPIF1<0我们称该式为SKIPIF1<0关于SKIPIF1<0的一元线性回归模型.其中,SKIPIF1<0称为因变量或响应变量,SKIPIF1<0称为自变量或解释变量;SKIPIF1<0和SKIPIF1<0为模型的未知参数,SKIPIF1<0称为截距参数,SKIPIF1<0称为斜率参数;SKIPIF1<0是SKIPIF1<0与SKIPIF1<0之间的随机误差.(2)经验回归方程我们将SKIPIF1<0称为SKIPIF1<0关于SKIPIF1<0的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,其中SKIPIF1<0(3)利用SKIPIF1<0刻画回归效果SKIPIF1<0的计算公式为SKIPIF1<0,其意义是SKIPIF1<0越大,残差平方和SKIPIF1<0越小,即模型的拟合效果越好;SKIPIF1<0越小,残差平方和越大,即模型的拟合效果越差.知识点四:列联表与独立性检验(1)2×2列联表如图,给出成对分类变量数据的交叉分类频数的数据统计表称为2×2列联表.SKIPIF1<0SKIPIF1<0合计SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0合计SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)独立性检验依据上述SKIPIF1<0列联表构造统计量SKIPIF1<0利用SKIPIF1<0的取值推断分类变量SKIPIF1<0和SKIPIF1<0是否独立的方法称为SKIPIF1<0独立性检验,读作“卡方独立性检验”,简称独立性检验.常用的小概率值和临界值表SKIPIF1<00.10.050.010.0050.001SKIPIF1<02.7063.8416.6357.87910.828第二部分:课前自我评估测试第二部分:课前自我评估测试1.(2022·重庆·高二阶段练习)甲、乙、丙、丁四位同学各自对SKIPIF1<0两变量的线性相关性做试验,分别求得样本相关系数SKIPIF1<0,如下表:甲乙丙丁SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0则试验结果中SKIPIF1<0两变量有更强线性相关性的是(
)A.甲 B.乙 C.丙 D.丁2.(2022·全国·长垣市第一中学高三开学考试(文))在研究线性回归模型时,样本数据SKIPIF1<0所对应的点均在直线SKIPIF1<0上,用SKIPIF1<0表示解释变量对于预报变量变化的贡献率,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.23.(2022·河南南阳·高二期末(文))对两个变量SKIPIF1<0与SKIPIF1<0进行回归分析,有SKIPIF1<0个不同模型可供选择,其中拟合效果最好的是(
)A.模型SKIPIF1<0的相关系数SKIPIF1<0为SKIPIF1<0 B.模型SKIPIF1<0的相关系数SKIPIF1<0为SKIPIF1<0C.模型SKIPIF1<0的相关系数SKIPIF1<0为SKIPIF1<0 D.模型SKIPIF1<0的相关系数SKIPIF1<0为SKIPIF1<04.(多选)(2022·全国·高二课时练习)下列散点图中,变量X,Y可用直线拟合的是(
)A. B.C. D.5.(2022·山东济宁·高二期末)下列命题中正确的是(
)A.在回归分析中,成对样本数据的样本相关系数r的绝对值越大,成对样本数据的线性相关程度越强B.在回归分析中,可用决定系数SKIPIF1<0的值判断模型的拟合效果,SKIPIF1<0越大,模型的拟合效果越好C.比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越差D.对分类变量X与Y,统计量SKIPIF1<0的值越大,则判断“X与Y有关系”的把握程度越大6.(2022·全国·高二课时练习)中国射击队在东京奥运会上共获得4金1银6铜,共11枚奖牌的成绩,创下了中国射击队奥运参赛史上奖牌数最多的新纪录.现从某射击训练基地随机抽取了20名学员(男、女各10人),统计他们的射击环数,数据如下表所示:男生897976101086女生10986879788若射击环数大于或等于9环,则认为成绩优异;否则,认为成绩不优异.根据所给数据,建立SKIPIF1<0列联表,并判断是否有90%的把握认为成绩优异与性别有关.参考公式和数据:SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0第三部分:典型例题剖析第三部分:典型例题剖析题型一:成对数据的相关性典型例题例题1.(2022·北京通州·高二期末)对三组数据进行统计,获得以下散点图,关于其相关系数依次是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则它们的大小关系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·江苏淮安·高二期末)对四组数据进行统计后,获得了如下图所示的散点图,对于其相关系数的比较,下列说法正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例题3.(2022·河南信阳·高二期末(文))若一组观测值SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0)对应的点位于同一直线上,则x,y的相关系数为______.同类题型归类练1.(2022·河南驻马店·高二期末(理))相关变量x,y的散点图如图所示,现对这两个变量进行线性相关分析.方案一:根据图中所有数据,得到回归直线方程SKIPIF1<0,相关系数为SKIPIF1<0;方案二:剔除点SKIPIF1<0,根据剩下的数据得到回归直线方程SKIPIF1<0,相关系数为SKIPIF1<0.则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·陕西西安·高二期末(理))小华为了研究数学名次和物理名次的相关关系,记录了本班五名同学的数学和物理的名次,如图.后来发现第四名同学数据记录有误,那么去掉数据SKIPIF1<0后,下列说法错误的是(
)A.样本线性相关系数SKIPIF1<0变大 B.残差平方和变大C.变量SKIPIF1<0、SKIPIF1<0的相关程度变强 D.线性相关系数SKIPIF1<0越趋近于SKIPIF1<03.(多选)(2022·广东潮州·高二期末)对四组数据进行统计,获得如图所示的散点图,关于其相关系数的关系,正确的有(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·福建厦门·高二期末)厦门中学生助手的甲、乙研究某人1-18周岁的身高y(单位:厘米)与年龄x(单位:周岁)的关系.甲用SKIPIF1<0拟合得图1,记x与y的样本相关系数为SKIPIF1<0,决定系数为SKIPIF1<0;乙用SKIPIF1<0拟合得图2,记x与y的样本相关系数为SKIPIF1<0,得y与x的关系SKIPIF1<0,决定系数为SKIPIF1<0,则(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0题型二:回归分析角度1:经验回归方程及应用典型例题例题1.(2022·陕西西安·高一期末)打好脱贫攻坚战,稳步实施乡村振兴,离不开农村基层党组织的坚强战斗堡垒作用的发挥.某村村党支部书记为改良盐碱地土壤,从省城请来专家进行技术指导,并从某农业大学引进富硒草莓.功夫不负有心人,富硒草莓种植成功,村里建起了草苺采摘园,到了年底,种植草莓的收入连同合作社的其他经营项目一起,成了贫困户的主要经济来源.该村对近几年草莓的采摘价格和采摘人数情况进行了统计,发现草莓的采摘价格SKIPIF1<0(元/斤)和采摘人数SKIPIF1<0(千人)的关系如下表:草莓采摘价格SKIPIF1<0(元/斤)2025303540采摘人数SKIPIF1<0(千人)5852453228(1)已知SKIPIF1<0与SKIPIF1<0之间有较强的线性相关性,试用最小二乘法求出SKIPIF1<0关于SKIPIF1<0的回归直线方程SKIPIF1<0;(2)该村根据2022年草莓的产量,估计约34千人采摘,那么2022年草莓的采摘价格应定为多少元/斤?(结果保留整数)参考公式:线性回归方程SKIPIF1<0的斜率和截距的棷小二乘估计分别为SKIPIF1<0.参考数据:SKIPIF1<0.例题2.(2022·全国·高二课时练习)随着我国中医学的发展,药用昆虫的使用愈来愈多,每年春暖以后至寒冬前,昆虫大量活动与繁殖,易于采集各种药用昆虫.已知一只药用昆虫的产卵数SKIPIF1<0(单位:个)与温度SKIPIF1<0(单位:℃)有关,于是科研人员在3月份中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据,如表所示.日期2日7日15日22日30日温度SKIPIF1<0/℃101113126产卵数SKIPIF1<0/个2125302613科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立SKIPIF1<0关于SKIPIF1<0的线性回归方程,再用选取的2组数据进行检验.(1)若选取的是2日与30日这2组数据,请根据7日、15日和22日这3组数据,求出SKIPIF1<0关于SKIPIF1<0的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的.试问(1)中所得的线性回归方程是否可靠?附:回归直线方程的斜率和截距的最小二乘估计公式分别为SKIPIF1<0,SKIPIF1<0.例题3.(2022·重庆巴蜀中学高三阶段练习)炎炎夏日,酷暑难耐!一种新型的清凉饮料十分畅销,如图是某商店SKIPIF1<0月SKIPIF1<0日至SKIPIF1<0日售卖该种饮料的累计销售量(单位:十瓶)的散点图:(参考数据:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)(1)由散点图可知,SKIPIF1<0日的数据偏差较大,请用前SKIPIF1<0组数据求出累计销售量SKIPIF1<0(单位:十瓶)关于日期SKIPIF1<0(单位:日)的经验回归方程;(2)请用(1)中求出的经验回归方程预测该商店SKIPIF1<0月份(共SKIPIF1<0天)售卖这种饮料的累计销售量.附:经验回归方程SKIPIF1<0中斜率和截距的最小二乘估计公式分别为:SKIPIF1<0,SKIPIF1<0.同类题型归类练1.(2022·内蒙古·满洲里市第一中学高二期末(文))某大型企业响应政府“节能环保,还人民一个蔚蓝的天空”的号召,对生产过程进行了节能降耗的环保技术改造.下表提供了技术改造后生产甲产品过程中记录的产量SKIPIF1<0与相应的生产能耗SKIPIF1<0标准煤的几组对照数据:SKIPIF1<012345SKIPIF1<03681013(1)请根据上表提供的数据,用最小二乘法求出SKIPIF1<0关于SKIPIF1<0的线性回归方程SKIPIF1<0;(参考公式:SKIPIF1<0,SKIPIF1<0)(2)已知该企业技术改造前生产SKIPIF1<0甲产品耗能为SKIPIF1<0标准煤,试根据(1)求出的线性回归方程,预测生产SKIPIF1<0甲产品的耗能比技术改造前降低多少SKIPIF1<0标准煤?2.(2022·新疆·新和县实验中学高二期末(文))某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:x681012y2356相关公式:SKIPIF1<0,SKIPIF1<0(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程:SKIPIF1<0(2)试根据(1)求出的线性回归方程,预测记忆力为9的同学的判断力.3.(2022·陕西汉中·高一期末)2021年5月习近平总书记到某地的医圣祠考察,总书记说,过去中华民族几千年都是靠中医药治病救人,特别是经过抗击新冠肺炎疫情、非典等重大传染病之后,我们对中医药的作用有了更深的认识,我们要发展中医药,注重用现代科学解读中医药学原理,走中西医结合的道路.某农科所经过实地考察和研究,发现某地适合种植甲、乙两种药材,通过大量考察研究,得到如下统计数据;药材甲的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如表:年份20172018201920202021年份编号12345单价/元/公斤)1719232630药材乙的收购价格始终为21元/公斤,其亩产量的频率分布直方图如图:(1)若药材甲的单价y(单位;元/公斤)与年份编号x具有线性相关关系,请求出y关于x的线性回归方程;(2)用上述频率分布直方图估计药材乙的平均亩产量,若不考虑其他因素,试判断2022年该地区种植哪种药材收益更高?并说明理由.参考公式:线性回归方程SKIPIF1<0的斜率和截距的最小二乘估计分别为SKIPIF1<0,SKIPIF1<0.角度2:非线性经验回归方程及应用典型例题例题1.(2022·陕西·千阳县中学一模(理))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费SKIPIF1<0(单位:千元)对年销售量SKIPIF1<0(单位:t)和年利润SKIPIF1<0(单位:千元)的影响,对近8年的年宣传费SKIPIF1<0和年销售量SKIPIF1<0(SKIPIF1<0=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<046.65636.8289.81.61469108.8表中SKIPIF1<0,SKIPIF1<0.(1)根据散点图判断,SKIPIF1<0与SKIPIF1<0哪一个适宜作为年销售量SKIPIF1<0关于年宣传费SKIPIF1<0的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立SKIPIF1<0关于SKIPIF1<0的回归方程;附:对于一组数据SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,其回归线SKIPIF1<0的斜率和截距的最小二乘估计分别为:SKIPIF1<0例题2.(2022·河南南阳·高二期末(文))在中国文娱消费中,视听付费市场规模不断增长,从2013年到2021年,在线音乐市场规模变化情况如下表所示:年份201320142015201620172018201920202021市场规模(亿元)0.50.91.62.84.710.518.829.943.7将2013年作为第1年,设第SKIPIF1<0年的市场规模为SKIPIF1<0(SKIPIF1<0,2,3,…,9)亿元.(1)SKIPIF1<0与SKIPIF1<0哪一个更适宜作为市场规模SKIPIF1<0关于SKIPIF1<0的回归方程?(给出判断即可,不必说明理由)(2)根据(1)中的判断及表中的数据,求市场规模SKIPIF1<0关于SKIPIF1<0的回归方程.(系数精确到0.0001)参考数据:令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.附:对于一组数据SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,其回归直线方程SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.例题3.(2022·四川·成都七中模拟预测(理))新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律.志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用SKIPIF1<0表示注射疫苗后的天数.SKIPIF1<0表示人体中抗体含量水平(单位:SKIPIF1<0,即:百万国际单位毫升),现测得某志愿者的相关数据如下表所示:天数SKIPIF1<0123456抗体含量水平SKIPIF1<0510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,SKIPIF1<0与SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均为大于零的常数)哪一个更适宜作为描述SKIPIF1<0与SKIPIF1<0关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出SKIPIF1<0关于SKIPIF1<0的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者的前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的SKIPIF1<0值大于50的天数为SKIPIF1<0,求SKIPIF1<0的分布列与数学期望.参考数据:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<03.5063.673.4917.509.4912.95519.014023.87其中SKIPIF1<0.参考公式:用最小二乘法求经过点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0的线性回归方程SKIPIF1<0的系数公式,SKIPIF1<0,SKIPIF1<0.同类题型归类练1.(2022·江苏泰州·高二期末)2022年初某公司研发一种新产品并投入市场,开始销量较少,经推广,销量逐月增加,下表为2022年1月份到7月份,销量y(单位:百件)与月份x之间的关系.月份x1234567销量y611213466101196(1)根据散点图判断SKIPIF1<0与SKIPIF1<0(c,d均为大于零的常数)哪一个适合作为销量y与月份x的回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及表中的数据,求y关于x的回归方程,并预测2022年8月份的销量;(3)考虑销量、产品更新及价格逐渐下降等因素,预测从2022年1月份到12月份(x的取值依次记作1到12),每百件该产品的利润为SKIPIF1<0元,求2022年几月份该产品的利润Q最大.参考数据:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<062.141.54253550.123.47其中SKIPIF1<0,SKIPIF1<0.参考公式:对于一组数据SKIPIF1<0,其回归直线SKIPIF1<0的斜率和截距的最小二乘估计公式分别为:SKIPIF1<0,SKIPIF1<0.2.(2022·河南·新蔡县第一高级中学高二阶段练习(文))为了帮助移民人口尽快脱贫,党中央作出对口扶贫的战略部署,在对口扶贫政策的帮扶下,某移民村庄100位移民近5年以来的人均年收入统计如下表:年份20162017201820192020年份代码SKIPIF1<012345人均年收入SKIPIF1<0(千元)1.32.85.78.913.8现要建立SKIPIF1<0关于SKIPIF1<0的回归方程,有两个不同回归模型可以选择,模型一:SKIPIF1<0,模型二:SKIPIF1<0.现用最小二乘法原理,已经求得模型一的方程为SKIPIF1<0.(1)用最小二乘法原理,结合下面的参考数据及参考公式求出模型二的方程(结果最后保留到小数点后一位);(2)若画出SKIPIF1<0关于SKIPIF1<0的散点图,无法确定上述哪个模型拟合效果更好,现计算出模型一的残差平方和为SKIPIF1<0,请计算模型二的残差平方和,并用它来判断哪个模型拟合效果更好.附:参考数据:SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0.参考公式:对于一组数据SKIPIF1<0,其回归直线SKIPIF1<0的斜率和截距的最小二乘法估计公式分别为SKIPIF1<0,SKIPIF1<0.角度3:相关系数SKIPIF1<0典型例题例题1.(2022·福建省福安市第一中学高三阶段练习)根据统计,某蔬菜亩产量的增加量SKIPIF1<0(百千克)与某种液体肥料每亩使用量SKIPIF1<0(千克)之间对应数据的散点图如图所示.(1)请从相关系数SKIPIF1<0(精确到SKIPIF1<0);(2)建立SKIPIF1<0关于SKIPIF1<0的线性回归方程,并用其估计当该种液体肥料每亩使用量为SKIPIF1<0千克时,该蔬菜亩产量的增加量约为多少百千克?参考公式:对于一组数据SKIPIF1<0,相关系数SKIPIF1<0,其回归直线SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,参考数据:SKIPIF1<0,SKIPIF1<0.例题2.(2022·陕西渭南·高二期末(文))近年来,随着互联网的发展,网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为了解网约车在某省的发展情况,调查机构从该省抽取了5个城市,分别收集和分析了网约车的SKIPIF1<0两项指标数SKIPIF1<0,数据如下表所示:城市1城市2城市3城市4城市5SKIPIF1<0指标数SKIPIF1<035679SKIPIF1<0指标数SKIPIF1<056789(1)由表中数据可知,SKIPIF1<0与SKIPIF1<0具有较强的线性相关关系,请利用相关系数SKIPIF1<0加以说明;(精确到0.01)(2)建立SKIPIF1<0关于SKIPIF1<0的线性回归方程,并预测当SKIPIF1<0指标数为8时,SKIPIF1<0指标数的估计值.相关系数SKIPIF1<0参考值:当SKIPIF1<0时,线性相关程度一般;当SKIPIF1<0时,线性相关程度较高.参考公式:SKIPIF1<0,线性回归方程SKIPIF1<0的斜率和截距的最小二乘法估计分别为SKIPIF1<0,SKIPIF1<0.参考数据:SKIPIF1<0,SKIPIF1<0.例题3.(2022·江西·高三阶段练习(文))北京时间2022年4月5日,CBA官方公布了2021—2022赛季CBA季后赛1/4决赛赛程表.赛程表显示,1/4决赛将在4月7日(周四)15:00打响,首场比赛是上半区的辽宁本钢迎战山西汾酒股份.其中辽宁队当家球星郭艾伦信心满满,球迷们终于可以一饱眼福.为了更好地预测球员郭艾伦在首战中的发挥情况,球迷们收集了郭艾伦赛前的一场比赛的数据如表所示.上场时间SKIPIF1<0(分钟)61118243235累计得分SKIPIF1<0分)51216223140由上表数据可知,可用线性回归模型拟合SKIPIF1<0与SKIPIF1<0的关系.(1)请用相关系数说明SKIPIF1<0与SKIPIF1<0具有很强的线性相关关系;(精确到0.01)(2)求出SKIPIF1<0关于SKIPIF1<0的线性回归方程,并预测球员郭艾伦在首战中出场时间40分钟的累计得分.(回归方程的斜率与纵截距精确到0.1,累计得分保留整数)附:相关系数SKIPIF1<0线性回归方程SKIPIF1<0的斜率与截距的最小二乘法公式分别为SKIPIF1<0,SKIPIF1<0.参考数据:SKIPIF1<0,SKIPIF1<0.同类题型归类练1.(2022·陕西西安·高二期末(文))近年来,随着物质生活水平的提高以及中国社会人口老龄化加速,家政服务市场规模逐年增长,2017~2021年中国家政市场规模数据(单位:百亿元)如下表:年份20172018201920202021年份代码x12345市场规模y(百亿元)3544587088(1)计算变量x,y的相关系数r;(结果精确到0.01)(2)求变量x,y之间的线性回归方程,并据此预测2025年中国家政市场规模有多少亿元?参考数据:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.参考公式:相关系数SKIPIF1<0,线性回归方程的斜率SKIPIF1<0,截距SKIPIF1<0.2.(2022·福建省福州第一中学高二期末)在对10个同类工场的研究后,某工场获得投入与纯利润的简单随机样本数据SKIPIF1<0(SKIPIF1<0,2,…,10),x,y,分别表示第i个工场的投入(单位:万元)和纯利润(单位:万元).第i个工场12345678910投入SKIPIF1<0/万元32313336373839434546纯利润SKIPIF1<0/万元25303437394142444850参考数据:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的经验回归方程(精确到0.01);(3)现有甲、乙两种大型机器供工场选择,甲型机器价位是60万元,乙型机器价位是50万元,下表是甲、乙两种大型机器各30台的使用年限(整年)统计表:1年2年3年4年合计甲型/台3129630乙型/台6129330据以往经验可知,每年使用任一型号都可获利润30万元,若仅考虑购置成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该工场选择买哪一款型号机器更划算?参考公式:相关系数SKIPIF1<0,对于一组具有线性相关关系的数据SKIPIF1<0(SKIPIF1<0,2,…,n),其回归直线SKIPIF1<0的斜率和截距的最小二乘估计公式分别为SKIPIF1<0,SKIPIF1<0.3.(2022·山东枣庄·高二期末)某公司对其产品研发的年投资额x(单位:百万元)与其年销售量y(单位:千件)的数据进行统计,整理后得到如下统计表:x12345y1.523.5815(1)求变量x和y的样本相关系数r(精确到0.01),并推断变量x和y的线性相关程度(参考:若SKIPIF1<0,则线性相关程度很强;若SKIPIF1<0,则线性相关程度一般;如果SKIPIF1<0,则线性相关程度较弱);(2)求年销售量y关于年投资额x的线性回归方程;(3)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量.参考公式:对于变量x和变量y,设经过随机抽样获得的成对样本数据为SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0和SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0的均值分别为SKIPIF1<0和SKIPIF1<0;称SKIPIF1<0为变量x和y的样本相关系数;线性回归方程SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0;参考数据:SKIPIF1<0.角度4:残差分析典型例题例题1.(2022·四川眉山·高二期末(文))某种农作物可以生长在滩涂和盐碱地,它的灌溉方式是将海水稀释后进行灌溉.某实验基地为了研究海水浓度SKIPIF1<0(%)对亩产量SKIPIF1<0(t)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表海水浓度SKIPIF1<0(%)34567亩产量SKIPIF1<0(t)0.560.520.460.350.31残差SKIPIF1<0SKIPIF1<00.01SKIPIF1<0SKIPIF1<00.01绘制散点图发现,可以用线性回归模型拟合亩产量SKIPIF1<0(t)与海水浓度SKIPIF1<0(%)之间的相关关系,用最小二乘法计算得SKIPIF1<0与SKIPIF1<0之间的线性回归方程为SKIPIF1<0(1)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值;(2)统计学中常用相关指数SKIPIF1<0来刻画回归效果,SKIPIF1<0越大,回归效果越好,如假设SKIPIF1<0,就说明预报变量SKIPIF1<0的差异有85%是解释变量SKIPIF1<0引起的.请计算相关指数SKIPIF1<0(精确到0.01),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?附:残差SKIPIF1<0,相关指数SKIPIF1<0,其中SKIPIF1<0例题2.(2022·黑龙江·哈九中模拟预测(文))医学中判断男生的体重是否超标有一种简易方法,就是用一个人身高的厘米数减去105所得差值即为该人的标准体重.比如身高175cm的人,其标准体重为SKIPIF1<0公斤,一个人实际体重超过了标准体重,我们就说该人体重超标了.已知某班共有30名男生,从这30名男生中随机选取6名,其身高和体重的数据如表所示:编号123456身高(cm)SKIPIF1<0165171160173178167体重(kg)SKIPIF1<0606362707158(1)从编号为1,2,3,4,5的这5人中任选2人,求恰有1人体重超标的概率;(2)依据上述表格信息,用最小二乘法求出了体重y对身高x的线性回归方程SKIPIF1<0,但在用回归方程预报其他同学的体重时,预报值与实际值吻合不好,需要对上述数据进行残差分析.按经验,对残差在区间SKIPIF1<0之外的同学要重新采集数据.问上述随机抽取的编号为3,4,5,6的四人中,有哪几位同学要重新采集数据?同类题型归类练1.(2021·全国·高二课时练习)为研究质量x(单位:g)对弹簧长度y(单位:cm)的影响,对不同质量的6个物体进行测量,数据如下表:x51015202530y7.258.128.959.9010.911.8(1)作出散点图并求回归直线方程;(2)求出R2并说明回归模型拟合的程度;(3)进行残差分析.2.(2022·福建省泉州市培元中学高二期中)为了提高智慧城市水平,某市公交公司推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:x1234567y611213466101196同学甲选择指数型函数模型SKIPIF1<0(c,d均为大于零的常数)来建立经验回归方程,据此,他对数据进行了一些初步处理,如下表:其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<062.141.54140253550.12276943.47(1)根据表中相关数据,利用同学甲的模型建立y关于x的经验回归方程;(2)若同学甲求得其非线性经验回归方程的残差平方和为SKIPIF1<0;同学乙选择线性回归模型SKIPIF1<0,并计算得经验回归方程为SKIPIF1<0,以及该回归模型的决定系数SKIPIF1<0;①用决定系数SKIPIF1<0比较甲乙两人所建立的模型,谁的拟合效果更好?②用你认为拟合效果较好的模型预测活动推出第8天使用扫码支付的人次;参考公式:对于一组数据SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,其回归直线SKIPIF1<0的斜率和截距的最小二乘估计公式分别为:SKIPIF1<0,SKIPIF1<0.决定系数:SKIPIF1<0题型三:列联表与独立性检验典型例题例题1.(2021·山东·临沂市兰山区教学研究室高三开学考试)某公司推出了一款针对中学生的智能学习软件,为了解学生对该学习软件的满意程度,随机抽取了正在使用软件的200名学生(男生与女生的人数均为100)对学习软件进行评价打分,若评分不低于80分视为满意.其得分情况的频率分布直方图如图所示,若根据频率分布直方图得到的评分低于70分的频率为0.15.(1)求a,b的值,并估计这200名学生对该学习软件评分的平均值与中位数;(2)结合频率分布直方图,完成以下列联表,并根据小概率值SKIPIF1<0的独立性检验,判断“对该学习软件满意是否与性别有关”.态度
性别满意不满意合计男生40女生合计附:随机变量SKIPIF1<0.SKIPIF1<00.250.150.100.050.0250.010.0050.001SKIPIF1<01.3232.0722.7063.8415.0246.6357.87910.828例题2.(2022·重庆·高二阶段练习)第24届冬季奥林匹克运动会(SKIPIF1<0),即2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕.2022年北京冬季奥运会共设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目,延庆赛区承办雪车、雪橇及高山滑雪项目,张家口赛区承办除雪车、雪橇、高山滑雪之外的所有雪上项目.为调查学生对冬季奥运会项目的了解情况,某中学进行了一次抽样调查,统计得到以下SKIPIF1<0列联表.了解SKIPIF1<0不了解SKIPIF1<0合计男生SKIPIF1<060200女生SKIPIF1<0110200合计(1)先完成SKIPIF1<0列联表,并依据SKIPIF1<0的独立性检验,分析该校学生对冬季奥运会项目了解情况与性别是否有关;(2)①为弄清学生不了解冬季奥运会项目的原因,按照性别采用分层抽样的方法,从样本中不了解冬季奥运会项目的学生中随机抽取5人,再从这5人中抽取3人进行面对面交流,求“男、女生至少各抽到一名”的概率;②用样本估计总体,若再从该校全体学生中随机抽取40人,记其中对冬季奥运会项目了解的人数为SKIPIF1<0,求SKIPIF1<0的数学期望.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0附表:附:SKIPIF1<0例题3.(2022·全国·高二单元测试)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开后才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占SKIPIF1<0;而在未购买者当中,男生、女生各占50%.请根据以上信息填写下表,并分析是否有95%的把握认为购买该款盲盒与性别有关.女生男生总计购买未购买总计参考公式:SKIPIF1<0,其中SKIPIF1<0.参考数据:SKIPIF1<00.100.050.0250.0100.0050.001SKIPIF1<02.7063.8415.0246.6357.87910.828(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:周数x123456盒数y16______23252630由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4,5,6周的数据求线性回归方程,再用第1,3周数据进行检验.①若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的.请用4,5,6周的数据求出y关于x的线性回归方程SKIPIF1<0,并说明所得的线性回归方程是否可靠.(参考公式:SKIPIF1<0,SKIPIF1<0)②如果通过①的检验得到的线性回归方程可靠,我们可以认为第2周卖出的盒数误差也不超过2盒,请你求出第2周卖出的盒数的可能取值;如果不可靠,请你设计一个估计第2周卖出的盒数的方案.同类题型归类练1.(2022·贵州·贵阳市白云区第二高级中学高二期末(理))某校设置了篮球挑战项目,现在从本校学生中随机抽取了60名男生和40名女生共100人进行调查,统计出愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:(1)根据条件完成下列SKIPIF1<0列联表:愿意不愿意总计男生女生总计(2)判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关;(3)挑战项目共有两关,规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为0.5,记甲通过的关数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动玩具策划方案
- 六一编程展示活动方案
- 六年级防疫活动方案
- 兰州市税务系统活动方案
- 共享跑车活动策划方案
- 共同开展文化活动方案
- 共建协议活动方案
- 关于各大商场活动方案
- 关于城轨活动方案
- 关于对联活动方案
- 2025年伽师县(中小学、幼儿园)教师招聘考试模拟试题及答案
- 2025年广西壮族自治区普通高中学业水平合格性考试生物模拟二 (含答案)
- 时尚饮品店区域代理权授权及合作协议
- 医院培训中心管理制度
- 香港证券及期货从业资格考试温习手册版HK
- 2025年中考物理知识点归纳(挖空版)
- 2024年安徽省初中学业水平考试生物试题含答案
- 2024年浙江省中考英语试题卷(含答案解析)
- 2024年演出经纪人考试必背1000题及完整答案(各地真题)
- 移动取消宽带委托书
- 团员组织关系转接介绍信(样表)
评论
0/150
提交评论