2022年浙江省嘉兴市七校高三二诊模拟考试数学试卷含解析_第1页
2022年浙江省嘉兴市七校高三二诊模拟考试数学试卷含解析_第2页
2022年浙江省嘉兴市七校高三二诊模拟考试数学试卷含解析_第3页
2022年浙江省嘉兴市七校高三二诊模拟考试数学试卷含解析_第4页
2022年浙江省嘉兴市七校高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A. B. C. D.2.若实数、满足,则的最小值是()A. B. C. D.3.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.5.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变6.若双曲线:的一条渐近线方程为,则()A. B. C. D.7.的展开式中的常数项为()A.-60 B.240 C.-80 D.1808.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A. B. C. D.9.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.410.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.11.在中,“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.14.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.15.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.16.展开式中的系数的和大于8而小于32,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.18.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.19.(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.20.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.从①,②,③这三个条件中任选一个,补充在上面问题中并作答.21.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.2.D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.3.C【解析】

根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.4.B【解析】

先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.5.D【解析】

由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题6.A【解析】

根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.7.D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.8.B【解析】

由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴,可得,又,,可解得,故双曲线的离心率是.故选B.【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.9.A【解析】

根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.10.C【解析】

根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.11.C【解析】

由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.12.B【解析】

根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.【详解】,,则,的共轭复数在复平面内对应点的坐标为,故答案为【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.14.【解析】

分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:【点睛】本题考查多面体的外接球的计算,属于中档题.15.【解析】

分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【详解】分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;③从到,由①可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.16.4【解析】

由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后结合三角形的面积公式可求;(Ⅲ)结合二倍角公式及和角余弦公式即可求解.【详解】(Ⅰ)因为,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因为,所以;(Ⅲ)由于,.所以.【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平.18.(1);(2).【解析】

(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.19.(1)(2)【解析】

(1)通过讨论的范围,得到关于的不等式组,解出取并集即可.(2)去绝对值将函数写成分段函数形式讨论分段函数的单调性由恒成立求得结果.【详解】解:(1)当时,,即或或解之得或,即不等式的解集为.(2)由题意得:当时为减函数,显然恒成立.当时,为增函数,,当时,为减函数,综上所述:使恒成立的的取值范围为.【点睛】本题考查了解绝对值不等式问题,考查不等式恒成立问题中求解参数问题,考查分类讨论思想,转化思想,属于中档题.20.见解析【解析】

选择①或②或③,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择①:因为,所以,所以.令,即,,所以使得的正整数的最小值为;选择②:因为,所以,.因为,所以不存在满足条件的正整数;选择③:因为,所以,所以.令,即,整理得.当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为.【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题.21.(1).(2)见解析【解析】

(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论