2025届河南省信阳市重点中学高三3月质量调研数学试题文试题含解析_第1页
2025届河南省信阳市重点中学高三3月质量调研数学试题文试题含解析_第2页
2025届河南省信阳市重点中学高三3月质量调研数学试题文试题含解析_第3页
2025届河南省信阳市重点中学高三3月质量调研数学试题文试题含解析_第4页
2025届河南省信阳市重点中学高三3月质量调研数学试题文试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省信阳市重点中学高三3月质量调研数学试题文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.2.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大3.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.44.已知向量,,则与的夹角为()A. B. C. D.5.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.106.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元7.函数在上的图象大致为()A. B. C. D.8.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.19.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.10.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.11.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.14.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.15.在中,角的平分线交于,,,则面积的最大值为__________.16.函数的极大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图中,为的中点,,,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.18.(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.19.(12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求B;(2)若的面积为,周长为8,求b.20.(12分)已知a>0,证明:1.21.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.22.(10分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.2.C【解析】

,,判断其在内的单调性即可.【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.3.A【解析】

采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.4.B【解析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.5.C【解析】

取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.6.A【解析】

根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.7.C【解析】

根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.8.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.9.B【解析】

根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.本题考查函数周期的求解,涉及对数运算,属综合基础题.10.A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.11.D【解析】

由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【详解】,.故选:D.本题考查复数的运算,考查共轭复数与模的定义,属于基础题.12.C【解析】

根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.【详解】设圆的半径为,由题意可得,所以,由题意设圆心,由题意可得,由直线与圆相切可得,所以,而,,所以,即,解得,所以的最大值为2,当且仅当时取等号,可得,所以圆心坐标为:,半径为,所以圆的标准方程为:.故答案为:.本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.14.【解析】

由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.15.15【解析】

由角平分线定理得,利用余弦定理和三角形面积公式,借助三角恒等变化求出面积的最大值.【详解】画出图形:因为,,由角平分线定理得,设,则由余弦定理得:即当且仅当,即时取等号所以面积的最大值为15故答案为:15此题考查解三角形面积的最值问题,通过三角恒等变形后利用均值不等式处理,属于一般性题目.16.【解析】

对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)10;(2).【解析】

(1)由题意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,进而解得BC的值.(2)由(1)可知△ADC为直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分线的性质可得,根据S△ABC=S△BCE+S△ACE可求S△BCE的值.【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,,,,所以,所以,.所以边的长为10.(2)由(1)知为直角三角形,所以,.因为是的角平分线,所以.所以,所以.即的面积为.本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.18.(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】

(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详解】(1),当时,恒成立,当时,,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,,此时函数只有一个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.本题考查导数的综合应用,涉及到单调性、零点、极值最值,考查分类讨论和等价转化思想,属于中档题.19.(1);(2)【解析】

(1)通过正弦定理和内角和定理化简,再通过二倍角公式即可求出;(2)通过三角形面积公式和三角形的周长为8,求出b的表达式后即可求出b的值.【详解】(1)由三角形内角和定理及诱导公式,得,结合正弦定理,得,由及二倍角公式,得,即,故;(2)由题设,得,从而,由余弦定理,得,即,又,所以,解得.本题综合考查了正余弦定理,倍角公式,三角形面积公式,属于基础题.20.证明见解析【解析】

利用分析法,证明a即可.【详解】证明:∵a>0,∴a1,∴a1≥0,∴要证明1,只要证明a1(a)1﹣4(a)+4,只要证明:a,∵a1,∴原不等式成立.本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题.21.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】

(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论