版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年江苏省南京市第五十五中学高三下学期2月调研数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.2.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.844.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.5.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)6.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.67.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.28.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-139.已知集合,则=()A. B. C. D.10.设则以线段为直径的圆的方程是()A. B.C. D.11.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种12.在中,角、、所对的边分别为、、,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足,则的最大值为____________.14.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.15.已知向量,,且,则________.16.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值.18.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.19.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.20.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M21.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.22.(10分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.2.C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.3.B【解析】
画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.4.B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.5.D【解析】
由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.6.C【解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.7.D【解析】
如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.8.B【解析】
由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.9.D【解析】
先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D此题考查的是集合的并集、补集运算,属于基础题.10.A【解析】
计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.本题考查了圆的标准方程,意在考查学生的计算能力.11.B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.12.D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.本题考查余弦定理边角互化的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
直接用表示出,然后由不等式性质得出结论.【详解】由题意,又,∴,即,∴的最大值为1.故答案为:1.本题考查不等式的性质,掌握不等式的性质是解题关键.14.【解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.15.【解析】
根据垂直向量的坐标表示可得出关于实数的等式,即可求得实数的值.【详解】,且,则,解得.故答案为:.本题考查利用向量垂直求参数,涉及垂直向量的坐标表示,考查计算能力,属于基础题.16.0.35【解析】
根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)特征值为或.【解析】
(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值.【详解】解:(1)设矩阵由题意,因为,所以,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1或.本题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.18.(1).(2)的方程为.【解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。19.(Ⅰ)曲线是焦点在轴上的椭圆;(Ⅱ).【解析】试题分析:(1)由题易知,直线的参数方程为,(为参数),;曲线的直角坐标方程为,椭圆;(2)将直线代入椭圆得到,所以,解得.试题解析:(Ⅰ)直线的参数方程为.曲线的直角坐标方程为,即,所以曲线是焦点在轴上的椭圆.(Ⅱ)将的参数方程代入曲线的直角坐标方程为得,,得,,20.(1)p=4;(2)OA⋅【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p221.(1)(2)【解析】
(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【详解】(1),,解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,,过点的抛物线的切线:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切线的方程为,点到切线的距离为,,即的面积为.本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式22.(Ⅰ);(Ⅱ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行行内培训课程
- 培训师自我评价
- 陕西省扶风县扶风高中2024-2025学年度高二物理上学期期中检测试题
- 河南省郑州市登封市2024-2025学年二年级上学期期中数学试题
- 2024--2025学年江苏省宿迁市沭阳县南湖初级中学八年级(上)第一次月考数学试卷(含答案)
- T-YNRZ 024-2024 黑老虎种植技术规程
- 内蒙古自治区通辽市科尔沁左翼中旗联盟校2024-2025学年三年级上学期期中考试英语试题
- 市场营销学-企业管理出版社
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)4.4 任务3 资源记录
- 语法填空专题复习练习及答案
- 高速公路项目竣工决算审计服务投标方案(技术方案)
- 天津市天津市红桥区2024-2025学年八年级上学期10月期中英语试题
- 八年级物理上册 第二章 二 物体的质量及其测量说课稿 (新版)北师大版
- 部编版道德与法治三年级上册第9课《心中的“110”》说课课件
- 2024-2030年中国运动服行业市场调研及发展策略研究报告
- 2024年云网安全应知应会考试题库
- 2024新人教版七年级上册英语期中作文预测及范文
- 期中试题-2024-2025学年六年级上册语文统编版
- 中国融通集团社招笔试题
- 煤矿标准化安全培训
- 英语中48个音标对应的字母组合
评论
0/150
提交评论