




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Problem18.1TogetzMandz2l,considerthecircuitinFig.(a).12/13/1999
z”=1+611(4+2)=4。
Z2I
Togetz22andz12,considerthecircuitinFig.(b).
z22=-=2II(4+6)=1.667Q
21
I。V,6IO=I2
Z]2=/=lC
Hence,
41
[z]=
11.667
Problem18.2ConsiderthecircuitinFig.(a)togetzHandz2I.
ICI。,1C1Q1Q[2=()
1
1Q1Qinv2
IQIC1QIQ
(a)
V,
1
zH=-=2+lll[2+lll(2+l)]
L
(3、(1)(11/4)11
z„-2+1112+1-2+;-2+,-2.733
k471+11/415
11.
I°\+3l°-J
14
I=---------T=—T
°-1+11/41151
141
【。=屋百
1
匕=1。=由
V21…
z21=——=-=z1?=0.06667
I115
Togetz22,considerthecircuitinFig.(b).
h=01CIQIC1。
++
inv2c
V1IQIQ
IQIQ1Q1Q
(b)
z22==2+1II(2+1II3)=zH=2.733
Thus,
-2.7330.06667"
[z]=C
L」0.066672.733
Problem18.3
(a)TofindzHandz21,considerthecircuitinFig.(a).
z“=¥=jii(i-岑Ri+j
LJ+i-J
Bycurrentdivision,
I”启…
V2=I0=jI,
V2.
%=丁=J
Togetz22andzl2,considerthecircuitinFig.(b).
v,=ji2
V..
Z”=M=J
l2
Thus,
1+jj
[z]=
io
(b)
Z”=「•=j+l+lll(-j)=l+j+/;=1.5+jo.5
LJ
V,=(1.5-j().5)I,
z2I=-=1.5—jO.5
Togetz22andzp,considerthecircuitinFig.(d).
z22=^-=-j+l+HI(-j)=1.5-jl.5
V,=(1.5-j0.5)I2
V.
z=——=1.5—j().5
p12
Thus,
1.5+j0.51.5-j0.5
[z]=
_1.5-j0.51.5-jl.5.
Problem18.4TransformthennetworktoaTnetwork.
ZiZ3
(12)(jl0)j120
12+jlO-j512+j5
-j60
Z
212+j5
50
Z3
12+j5
Thezparametersare
_(-j60)(12-j5)
z=z
i22i=Z2=144+25=-L775-j4.26
-z「L775+j4.26
z1i=Z]+Ng
(5())j5)
z22=Z3+z2,=^~+z2l=1.7758-j5.739
Thus,
1.775+j4.26-1.775-j4.26
[z]=
--1.775-j4.261.775-j5.739_
Problem18.5ConsiderthecircuitinFig.(a).
S2+S+1
11=s3+2s2+3s+l
11s
111-
_________ss+1Ts+1
11
1II-+1+S+-+1+S+-------+s2+S+1
sss+1ss+1
s3+2s2+3s+l1
s?+2s-+3s+1
zJ=1
21Ijs3+2s2+3s+l
ConsiderthecircuitinFig.(b).
(l[l+s+T)1+s+L
Is人s+17s+1
Z22nr"='s"
-+1+S+----71+S+S-+----;
SS+lS+l
s~+2s+2
22=s3+2s2+3s+l
Hence,
S24-S+l
s3+2s2+3s+ls3+2s2+3s+l
s2+2s+2
-s3+2s2+3s+ls3+2s2+3s+l-
Problem18.6TofindzHandz21,connectavoltagesourceV〕totheinputand
leavetheoutputopenasinFig.(a).
3()3
where*=20+30,=-V
50
V,-Vo3.2
I=FF=032V。
4.2V。
=13.125。
0.32Vo
v2_0.6Vo
Z21=1.875C
I."0.32Vo
Toobtainz22andz12,usethecircuitinFig.(b).
I2=().5V2+^-=0.5333V2
V2_1
Z22=1.875C
I2-0.5333
V,=V2-(20)(0.5V2)=-9V2
_Y_-9V2
Z12=-16.875。
~I2~0.5333V2
Thus,
13.125-16.875
[z]=
1.8751.875
Problem18.7TogetzNandz2I,refertothecircuitinFig.(a).
Atnode1,
KT
⑴
L=T+4
Atnode2,
V-V
VxV2V2+2VX
c-----Vx__V,⑵
42
Substituting(2)into(1),
2V,
v--=-1.5V,
42
JL_s3
V2-2
-2
Z2I-j-=y=-0.6667Q
25
Y=VX+L=-V2+I、L+L=#
V,5
zH=-^=-=1.66670
1]J
Togetz22andz12,refertothecircuitinFig.(b).
Atnode2,
V2+2VV2-Vx
⑶
Atnode1,
V-VV
Vor(4)
=广一>2=5VXVX=0.2V2
Substituting(4)into(3),
IV2+0.4V2+匕-0.2匕03v
V,1
z,,=j=—=1.1111。
22
I20.9
111()2
Y="三§i2=/
Y2c-
z1p2=—=77=0-2222Q
I29
Thus,
-1.66670.2222-
[z]=C
i」-0.66671.1111
Problem18.8ItisevidentfromFig.18.5thataTnetworkisappropriatefor
realizingthezparameters.
R,=zH—z12=10—4=6Q
R2=z22—z12=6—4=2c
R3=zI2=z21=4C
Problem18.9
(a)Thisisanon-reciprocalcircuitsothatthetwo-portlooksliketheone
showninFigs,(a)and(b).
1125Q10Q
I2
1_____
++
Vi20I5IiV
2>2
(b)
(b)Thisisareciprocalnetworkandthetwo-portlookliketheoneshownin
Figs,(c)and(d).
Kll-Z12Z22-Z12
IlI2
-1
++
Z12
Viv2
(c)
21
z”-Ng=1+—=14
S0.5s
Z22-Z12=2s
1
Z|2
h1610.5F2Hh
++
IF
Viv2
(d)
Problem18.10Thisisareciprocaltwo-portsothatitcanberepresentedbythe
circuitinFigs,(a)and(b).
FromFig.(b),
V1=(8+4114)1,=101.
Bycurrentdivision,
Problem18.11Thisisareciprocaltwo-portsothat12/13/1999
thecircuitcanberepresentedbythecircuitbelow.
Weapplymeshanalysis.
Formesh1,
-120+901,+10I2=0——>12=91,+I2(1)
Formesh2,
3011+12012=0——>I,=-4I2(2)
Substituting(2)into(1),
12=-361.+1.=-351.——>
222235
ll|2if12?
P=5lUR=J(100)=5.877W
Problem18.12TofindZTh,considerthecircuitinFig.(a).
Y=ZuL+ZI2h⑴
V2=z2|I|+z2212⑵
But
v2=1,V.=-ZSI,
-Z19
Hence,O=(Z]1+Zs)L+z1212>1.=——
Zll+4ZIs-I2
Z2IZ%
1+Z22
Z11+Zs2
rjV21Z21Z12
TofindVTh,considerthecircuitinFig.(b).
Substitutingtheseinto(1)and(2),
Problem18.13Asareciprocaltwo-port,thegivencircuitcanberepresentedas
showninFig.(a).
5Q10-j6Q4-j6c
15Z0°Vj4C
Atterminalsa-b,
ZR=(4-j6)+j6ll(5+10-j6)
Jj6(L15-j6)
Zn=4-j6+15^4-j6+2.4+j6
ZR=6.4C
i6
V(15ZO>j6=
^j6+5ilO-j6°^I
TheTheveninequivalentcircuitisshowninFig.(b).
Fromthis,
K=j&4(j6)=3.18/148。
vo(t)=3.18cos(2t+148°)V
Problem18.14ToobtainzHandz2I,considerthecircuitinFig.(a).
(a)
Inthiscase,the4-Qand8-Qresistorsareinseries,sincethesamecurrent,Io,passes
throughthem.Similarly,the2-Qand6-Qresistorsareinseries,sincethesamecurrent,
Io,passesthroughthem.
V.(12)⑻
zn=-^=(4+8)||(2+6)=12118=y-^=4.80
JL14U
82,3
=51=-I
°=8+12°5
But-V2-4IO+2IO=0
-86,-2,
V=-4I+2I+5I[=T11
2OO51
V,-2
z=~=—=-0.4Q
21L5
(b)
Togetz92andz12,considerthecircuitinFig.(b).
V,,(6)(14)
z22—=(4+2)II(8+6)=6II14=———=4.2Q
122°
z12=z?1=-0.4Q
Thus,
4.8・0.4
[zl=
・0.44.2
WemaytakeadvantageofTable18.1toget[y]from[z].
△z=(4.8)(4.2)—(0.4)2=20
z224.2-zI20.4八
y”=0.21y,,=--=—=0.02
△z20力2Az20
-Z2]0.4z4.8
=0.02y=—N=——=0.24
丫21=’22A20
Az20z
Thus,
0.210.02
[y]=
”」0.020.24
Problem18.15Togetynandy2I,considerthecircuitinFig.(a).
V、=(6+6113)L=8L
T-6-2V,-y
I-i
V->i=—2=—
J2iV,12
Togety22andy12,considerthecircuitinFig.(b).
I2111
312
V2311(3+6116)31162
Io31
।2'°3+6123
(b)
2s
V=(sll2)I=
22S4-2
12s+21
0.5+-
丫22=工=工s
-s-ss+2-V2
1广打2=帝卞丫2=丁
Yi2=9=。5
Thus,
Fs+0.5-0.5
[yl=L-0.50.5+l/s」S
Problem18.17TogetyHandy2I,refertoFig.(a).
L
L=g+O.2Y=o.4Y—>y11=^=o.4
I2=-0.2V,―>丫2]=*一0.2
Togety22andy12,refertothecircuitinFig.(b).
SinceVj=0,thedependentcurrentsourcecanbereplacedwithanopencircuit.
2i
v=1()I“y22=—=0.1
221()
y小田=o
Thus,
0.40
S
-0.20.1
Consequently,th>yparameterequivalentcircuitisshowninFiq.(c).
Problem18.18
(a)TogetyHandy21refertothecircuitinFig.(a).
Atnode1,
i"Y-v,»I1=1.5Y—0.5V。(1)
Atnode2,
]工X」>1.2V,=V⑵
F23O
Substituting(2)into(1)gives,
L=1.5M-0.6V1=().9Y——>%1=5=().9
Vi
12=母=-().4丫|---->丫21=装=。4
Togety22andyl2refertothecircuitinFig.(b).
Vx=V,=0sothatthedependentcurrentsourcecanbereplacedbyan
opencircuit.
I1
=2==
V2=(3+2+0)I2=5I2------>y225
1!==-0.2V2------>yl2=^-=-0.2
Thus,
-0.9-0.2'
(b)Togetynandy21refertoFig.(c).
z=jll(l+lll-j)=jll1+4=
injll(1.5-j0.5)
v1-J/
j(1.5-j0.5)
=0.6+j0.8
1.5+j0.5
I.11
V.=Zin->y..=—=----=-------------=0.6—j0.8
V,Zin0.6+j0.8J
j.1.5-j0.5
I=-----1i=------i
01.5+j0.515°1.5+j0.5
..-j________I,_______
I。=k1。=(7)(1.5+也5)=西
(1.5-J0.5)22+i
12=I0+1°~L51+
-I2=(1.2-j().4)(0.6-j0.8)V,=(0.4-jl.2)V1
丫21=茎=-04+只-2=丫|2
vi
Togety22refertothecircuitinFig.(d).
ZoUt=jH(l+lll-j)=0.6+j0.8
1
y22=7-=0.6-j0.8
■oul
Thus,
「0.6-j0・8・0・4+jl.2
[y]=L-0.4+jl.20.6-j0.8
Problem18.19Sincethisisareciprocalnetwork,aFInetworkisappropriate,as
shownbelow.
(a)
1/4S
1/4S1/8S
(b)
S,Z1=4Q
S,
4Z2
311
S,
Y3=y22+y21=r48
Problem18.20Togetynandy21,considerthecircuitinFig.(a).
Atnode1,
V
-^+2V2V.=-V⑴
2X14s
V,-VV,+2V.I,
xL
But==1-5V1—>y„=^=i.5
Also,I2+^-=2VX——>I2=1.75VX=-3.5V,
y2i=£=-3.5
Togety22andy12,considerthecircuitinFig.(b).
Atnode2,
V-V
Atnode1,
Substituting(3)into(2)gives
I2=2VX-^VX=1.5VX=-1.5V2
丫22=^=-L5
-VxV2I,
>y『=o.5
Thus,
Problem18.21ConsiderthecircuitinFig.(a).
025
vi=4ii—>y”=*=今=
I2=20I,=5V,—>y2T=5
ConsiderthecircuitinFig.(b).
I.0.1
4I,=0.1V2>y,2=v-=—=0.025
V,I,
I2=20I,+^-=0.5V2+0.1V2=0.6V2——>y22=^-=0.6
Thus,
0.250.025'
Fvl=_S
Alternatively,fromthegivencircuit,
VI=41,-0.1V2
I2=201,+0.1V2
Comparingthesewiththeequationsforthehparametersshowthat
h”=4,h12=-().1,h21=20,h22=0.1
UsingTable18.1,
11-h120.1
y12-卜=-=0.025
Yu=7=0.25,h
-h,!4n4
△h
20nh0.4+2久
yA
y2\=7=5,22-h-,—u.o
h”11114
asabove.
Problem18.22WeobtainyHandy2IbyconsideringthecircuitinFig.(a).
4Q
-------•-------—.-----•—
++
V16Q
p2QV2=0
---•---------------------------•-----
(a)
葭・6
y21=V;=34=-0-1765
Togety22andy12,considerthecircuitinFig.(b).
工=2”(4+6h)=2仙+金⑵(34/7)=%=工
y222+(34/7)24I2
24
y22=—=0.7059
-62147
---------:—L=-1=—V
i2+(34/7)'48723492
-6I,-6八
.=~—VV?=34='0-1765
,342y.2
Thus,
0.2941-0.1765
lyl=S
-0.17650.7059
TheequivalentcircuitisshowninFig.(c).Aftertransformingthecurrentsourcetoa
voltagesource,wehavethecircuitinFig.(d).
2c
8.5V2Q
(2111.889)(8.5)(0.9714)(8.5)
V==0.5454
2111.889+8.5+5.667-0.9714+14.167
V2(0.5454)2
=0.1487W
2
Problem18.23
(a)Transformingthe△subnetworktoYgivesthecircuitinFig.(a).
Itiseasytogetthezparameters
zl2=z21=2,zN=1+2=3,z22=3
△z=zHz22-Z|2z21=9—4=5
z993-z|2-2
九一%一5一丫22'y"y2i一△工-5
Thus,theequivalentcircuitisasshowninFig.(b).
32
I,=1()=-V,--V,——>50=3V,-2V(1)
55?
-23
I2=-4=-y¥,+-V2——>-20=-2V,+3V,
10=V,-1.5V2——>V,=10+1.5V2(2)
Substituting(2)into(1),
50=30+4.5V2-2V,——>V2=8V
V,=10+1.5V2=22V
(b)Fordirectcircuitanalysis,considerthecircuitinFig.(a).
Forthemainnon-referencenode,
V
10-4=———>V=12
2°
V-V
10=」『..——>V,=10+Vo=22V
Problem18.24
(a)Converttozparameters;then,converttohparametersusingTable18.1.
zn=zi2=z2i
=60Q,z22=100Q
△z=zn,22-zi2z2i=6000-3600=2400
Az240060
h”-__—,hn=--=0.6
Z2210()Z2210()
_一1
112]=-0.6,h22=0.01
Z22Z22
Thus,
24Q0.6
|hl=
L」-0.60.01S
(b)Similarly,
zN=30flZ12=z2I=z22=20Q
=600-400=200
20020
h=一=10=一=1
1n1201220
1
^21=-l1122=——=0.05
20
Thus,
0.05S
12/13/1999
Problem18.31Wereplacethetwo-portbyitsequivalentcircuitasshownbelow.
50kQ
Zin=-p,2001150=40kC
V,=-50I](4()xl()3)=(_2xl()6)L
Fortheleftloop,
V-IO-4V,
—s--------=--I
1000,
\-10-4(-2X1061,)=10001,
Vs=10001,-2001,=8001,
V
Zin=-^=800Q
1I----------------------
Alternatively,
(1()4)(5())(50xKT)
Z=200+800-=800Q
in1+(0.5x10-5)(50x1(")
Problem18.32Togetg”andg21,considerthecircuitinFig.(a).
Y=(3j6)L_V1卷=0Q667+J。。333s
121,2
=0.8+j0.4
g2i(12-J6)1,
Togetgpandg22,considerthecircuitinFig.(b).
-12>gn4=有/=力21=O8-j().4
,2I'-JO
V2=(jlO+12ll-j6)I2
8-=iV72=jl0+i(12)r(-jk6)=2-4+j5-2fi
0.0667+j0.0333S-0.8-j0.4
0.8+j0.42.4+j5.2Q
Problem18.33Forthegparameters
L=gnv、+g12i2⑴
V1=§21V]+§2212⑵
ButV,=VS-I,ZSand
V2=-I2ZL=§21V1+§2212
V++ZI
0-g211(g22L)2
Substitutingthisinto(1),
।_(g22gli+Z-g||~~g21gl2)
-§21
or
giZ+Ag
Also,v2=g21(Vs-I,Zs)+g22I2
=§21Vs-g21ZsI]+g22I2
=§2iVs+Zs(g“Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人食堂承包协议书
- 单片机原理与应用练习题与参考答案
- 人防租赁转让合同范本
- 热工基础 模拟试题
- 万年牢说课稿
- 一周学习总结
- 一防水合同范例
- 兼职定金合同范本
- 《荆棘鸟》读书心得
- 制作甲方合同范本
- 2025年湖南食品药品职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 碳酸钙脱硫剂项目可行性研究报告立项申请报告模板
- 山东省泰安市新泰市2024-2025学年(五四学制)九年级上学期1月期末道德与法治试题(含答案)
- DB3502T 160-2024 工业产品质量技术帮扶和质量安全监管联动工作规范
- 燃气农村协管员培训
- 春节后复工安全教育培训
- 提高发票额度的合同6篇
- 车站信号自动控制(第二版) 课件 -3-6502部分
- 2024安徽教师统一招聘考试《小学英语》试卷真题及答案
- TPO防水卷材在商业建筑屋面施工方案
- 2024解析:第九章大气压强-基础练(解析版)
评论
0/150
提交评论