电路原理课后答案18章_第1页
电路原理课后答案18章_第2页
电路原理课后答案18章_第3页
电路原理课后答案18章_第4页
电路原理课后答案18章_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Problem18.1TogetzMandz2l,considerthecircuitinFig.(a).12/13/1999

z”=1+611(4+2)=4。

Z2I

Togetz22andz12,considerthecircuitinFig.(b).

z22=-=2II(4+6)=1.667Q

21

I。V,6IO=I2

Z]2=/=lC

Hence,

41

[z]=

11.667

Problem18.2ConsiderthecircuitinFig.(a)togetzHandz2I.

ICI。,1C1Q1Q[2=()

1

1Q1Qinv2

IQIC1QIQ

(a)

V,

1

zH=-=2+lll[2+lll(2+l)]

L

(3、(1)(11/4)11

z„-2+1112+1-2+;-2+,-2.733

k471+11/415

11.

I°\+3l°-J

14

I=---------T=—T

°-1+11/41151

141

【。=屋百

1

匕=1。=由

V21…

z21=——=-=z1?=0.06667

I115

Togetz22,considerthecircuitinFig.(b).

h=01CIQIC1。

++

inv2c

V1IQIQ

IQIQ1Q1Q

(b)

z22==2+1II(2+1II3)=zH=2.733

Thus,

-2.7330.06667"

[z]=C

L」0.066672.733

Problem18.3

(a)TofindzHandz21,considerthecircuitinFig.(a).

z“=¥=jii(i-岑Ri+j

LJ+i-J

Bycurrentdivision,

I”启…

V2=I0=jI,

V2.

%=丁=J

Togetz22andzl2,considerthecircuitinFig.(b).

v,=ji2

V..

Z”=M=J

l2

Thus,

1+jj

[z]=

io

(b)

Z”=「•=j+l+lll(-j)=l+j+/;=1.5+jo.5

LJ

V,=(1.5-j().5)I,

z2I=-=1.5—jO.5

Togetz22andzp,considerthecircuitinFig.(d).

z22=^-=-j+l+HI(-j)=1.5-jl.5

V,=(1.5-j0.5)I2

V.

z=——=1.5—j().5

p12

Thus,

1.5+j0.51.5-j0.5

[z]=

_1.5-j0.51.5-jl.5.

Problem18.4TransformthennetworktoaTnetwork.

ZiZ3

(12)(jl0)j120

12+jlO-j512+j5

-j60

Z

212+j5

50

Z3

12+j5

Thezparametersare

_(-j60)(12-j5)

z=z

i22i=Z2=144+25=-L775-j4.26

-z「L775+j4.26

z1i=Z]+Ng

(5())j5)

z22=Z3+z2,=^~+z2l=1.7758-j5.739

Thus,

1.775+j4.26-1.775-j4.26

[z]=

--1.775-j4.261.775-j5.739_

Problem18.5ConsiderthecircuitinFig.(a).

S2+S+1

11=s3+2s2+3s+l

11s

111-

_________ss+1Ts+1

11

1II-+1+S+-+1+S+-------+s2+S+1

sss+1ss+1

s3+2s2+3s+l1

s?+2s-+3s+1

zJ=1

21Ijs3+2s2+3s+l

ConsiderthecircuitinFig.(b).

(l[l+s+T)1+s+L

Is人s+17s+1

Z22nr"='s"

-+1+S+----71+S+S-+----;

SS+lS+l

s~+2s+2

22=s3+2s2+3s+l

Hence,

S24-S+l

s3+2s2+3s+ls3+2s2+3s+l

s2+2s+2

-s3+2s2+3s+ls3+2s2+3s+l-

Problem18.6TofindzHandz21,connectavoltagesourceV〕totheinputand

leavetheoutputopenasinFig.(a).

3()3

where*=20+30,=-V

50

V,-Vo3.2

I=FF=032V。

4.2V。

=13.125。

0.32Vo

v2_0.6Vo

Z21=1.875C

I."0.32Vo

Toobtainz22andz12,usethecircuitinFig.(b).

I2=().5V2+^-=0.5333V2

V2_1

Z22=1.875C

I2-0.5333

V,=V2-(20)(0.5V2)=-9V2

_Y_-9V2

Z12=-16.875。

~I2~0.5333V2

Thus,

13.125-16.875

[z]=

1.8751.875

Problem18.7TogetzNandz2I,refertothecircuitinFig.(a).

Atnode1,

KT

L=T+4

Atnode2,

V-V

VxV2V2+2VX

c-----Vx__V,⑵

42

Substituting(2)into(1),

2V,

v--=-1.5V,

42

JL_s3

V2-2

-2

Z2I-j-=y=-0.6667Q

25

Y=VX+L=-V2+I、L+L=#

V,5

zH=-^=-=1.66670

1]J

Togetz22andz12,refertothecircuitinFig.(b).

Atnode2,

V2+2VV2-Vx

Atnode1,

V-VV

Vor(4)

=广一>2=5VXVX=0.2V2

Substituting(4)into(3),

IV2+0.4V2+匕-0.2匕03v

V,1

z,,=j=—=1.1111。

22

I20.9

111()2

Y="三§i2=/

Y2c-

z1p2=—=77=0-2222Q

I29

Thus,

-1.66670.2222-

[z]=C

i」-0.66671.1111

Problem18.8ItisevidentfromFig.18.5thataTnetworkisappropriatefor

realizingthezparameters.

R,=zH—z12=10—4=6Q

R2=z22—z12=6—4=2c

R3=zI2=z21=4C

Problem18.9

(a)Thisisanon-reciprocalcircuitsothatthetwo-portlooksliketheone

showninFigs,(a)and(b).

1125Q10Q

I2

1_____

++

Vi20I5IiV

2>2

(b)

(b)Thisisareciprocalnetworkandthetwo-portlookliketheoneshownin

Figs,(c)and(d).

Kll-Z12Z22-Z12

IlI2

-1

++

Z12

Viv2

(c)

21

z”-Ng=1+—=14

S0.5s

Z22-Z12=2s

1

Z|2

h1610.5F2Hh

++

IF

Viv2

(d)

Problem18.10Thisisareciprocaltwo-portsothatitcanberepresentedbythe

circuitinFigs,(a)and(b).

FromFig.(b),

V1=(8+4114)1,=101.

Bycurrentdivision,

Problem18.11Thisisareciprocaltwo-portsothat12/13/1999

thecircuitcanberepresentedbythecircuitbelow.

Weapplymeshanalysis.

Formesh1,

-120+901,+10I2=0——>12=91,+I2(1)

Formesh2,

3011+12012=0——>I,=-4I2(2)

Substituting(2)into(1),

12=-361.+1.=-351.——>

222235

ll|2if12?

P=5lUR=J(100)=5.877W

Problem18.12TofindZTh,considerthecircuitinFig.(a).

Y=ZuL+ZI2h⑴

V2=z2|I|+z2212⑵

But

v2=1,V.=-ZSI,

-Z19

Hence,O=(Z]1+Zs)L+z1212>1.=——

Zll+4ZIs-I2

Z2IZ%

1+Z22

Z11+Zs2

rjV21Z21Z12

TofindVTh,considerthecircuitinFig.(b).

Substitutingtheseinto(1)and(2),

Problem18.13Asareciprocaltwo-port,thegivencircuitcanberepresentedas

showninFig.(a).

5Q10-j6Q4-j6c

15Z0°Vj4C

Atterminalsa-b,

ZR=(4-j6)+j6ll(5+10-j6)

Jj6(L15-j6)

Zn=4-j6+15^4-j6+2.4+j6

ZR=6.4C

i6

V(15ZO>j6=

^j6+5ilO-j6°^I

TheTheveninequivalentcircuitisshowninFig.(b).

Fromthis,

K=j&4(j6)=3.18/148。

vo(t)=3.18cos(2t+148°)V

Problem18.14ToobtainzHandz2I,considerthecircuitinFig.(a).

(a)

Inthiscase,the4-Qand8-Qresistorsareinseries,sincethesamecurrent,Io,passes

throughthem.Similarly,the2-Qand6-Qresistorsareinseries,sincethesamecurrent,

Io,passesthroughthem.

V.(12)⑻

zn=-^=(4+8)||(2+6)=12118=y-^=4.80

JL14U

82,3

=51=-I

°=8+12°5

But-V2-4IO+2IO=0

-86,-2,

V=-4I+2I+5I[=T11

2OO51

V,-2

z=~=—=-0.4Q

21L5

(b)

Togetz92andz12,considerthecircuitinFig.(b).

V,,(6)(14)

z22—=(4+2)II(8+6)=6II14=———=4.2Q

122°

z12=z?1=-0.4Q

Thus,

4.8・0.4

[zl=

・0.44.2

WemaytakeadvantageofTable18.1toget[y]from[z].

△z=(4.8)(4.2)—(0.4)2=20

z224.2-zI20.4八

y”=0.21y,,=--=—=0.02

△z20力2Az20

-Z2]0.4z4.8

­=0.02y=—N=——=0.24

丫21=’22A20

Az20z

Thus,

0.210.02

[y]=

”」0.020.24

Problem18.15Togetynandy2I,considerthecircuitinFig.(a).

V、=(6+6113)L=8L

T-6-2V,-y

I-i

V->i=—2=—

J2iV,12

Togety22andy12,considerthecircuitinFig.(b).

I2111

312

V2311(3+6116)31162

Io31

।2'°3+6123

(b)

2s

V=(sll2)I=

22S4-2

12s+21

0.5+-

丫22=工=工s

-s-ss+2-V2

1广打2=帝卞丫2=丁

Yi2=9=。5

Thus,

Fs+0.5-0.5

[yl=L-0.50.5+l/s」S

Problem18.17TogetyHandy2I,refertoFig.(a).

L

L=g+O.2Y=o.4Y—>y11=^=o.4

I2=-0.2V,―>丫2]=*一0.2

Togety22andy12,refertothecircuitinFig.(b).

SinceVj=0,thedependentcurrentsourcecanbereplacedwithanopencircuit.

2i

v=1()I“y22=—=0.1

221()

y小田=o

Thus,

0.40

S

-0.20.1

Consequently,th>yparameterequivalentcircuitisshowninFiq.(c).

Problem18.18

(a)TogetyHandy21refertothecircuitinFig.(a).

Atnode1,

i"Y-v,»I1=1.5Y—0.5V。(1)

Atnode2,

]工X」>1.2V,=V⑵

F23O

Substituting(2)into(1)gives,

L=1.5M-0.6V1=().9Y——>%1=5=().9

Vi

12=母=-().4丫|---->丫21=装=。4

Togety22andyl2refertothecircuitinFig.(b).

Vx=V,=0sothatthedependentcurrentsourcecanbereplacedbyan

opencircuit.

I1

=2==

V2=(3+2+0)I2=5I2------>y225

1!==-0.2V2------>yl2=^-=-0.2

Thus,

-0.9-0.2'

(b)Togetynandy21refertoFig.(c).

z=jll(l+lll-j)=jll1+4=

injll(1.5-j0.5)

v1-J/

j(1.5-j0.5)

=0.6+j0.8

1.5+j0.5

I.11

V.=Zin->y..=—=----=-------------=0.6—j0.8

V,Zin0.6+j0.8J

j.1.5-j0.5

I=-----1i=------i

01.5+j0.515°1.5+j0.5

..-j________I,_______

I。=k1。=(7)(1.5+也5)=西

(1.5-J0.5)22+i

12=I0+1°~L51+

-I2=(1.2-j().4)(0.6-j0.8)V,=(0.4-jl.2)V1

丫21=茎=-04+只-2=丫|2

vi

Togety22refertothecircuitinFig.(d).

ZoUt=jH(l+lll-j)=0.6+j0.8

1

y22=7-=0.6-j0.8

■oul

Thus,

「0.6-j0・8・0・4+jl.2

[y]=L-0.4+jl.20.6-j0.8

Problem18.19Sincethisisareciprocalnetwork,aFInetworkisappropriate,as

shownbelow.

(a)

1/4S

1/4S1/8S

(b)

S,Z1=4Q

S,

4Z2

311

S,

Y3=y22+y21=r48

Problem18.20Togetynandy21,considerthecircuitinFig.(a).

Atnode1,

V

-^+2V2V.=-V⑴

2X14s

V,-VV,+2V.I,

xL

But==1-5V1—>y„=^=i.5

Also,I2+^-=2VX——>I2=1.75VX=-3.5V,

y2i=£=-3.5

Togety22andy12,considerthecircuitinFig.(b).

Atnode2,

V-V

Atnode1,

Substituting(3)into(2)gives

I2=2VX-^VX=1.5VX=-1.5V2

丫22=^=-L5

-VxV2I,

>y『=o.5

Thus,

Problem18.21ConsiderthecircuitinFig.(a).

025

vi=4ii—>y”=*=今=

I2=20I,=5V,—>y2T=5

ConsiderthecircuitinFig.(b).

I.0.1

4I,=0.1V2>y,2=v-=—=0.025

V,I,

I2=20I,+^-=0.5V2+0.1V2=0.6V2——>y22=^-=0.6

Thus,

0.250.025'

Fvl=_S

Alternatively,fromthegivencircuit,

VI=41,-0.1V2

I2=201,+0.1V2

Comparingthesewiththeequationsforthehparametersshowthat

h”=4,h12=-().1,h21=20,h22=0.1

UsingTable18.1,

11-h120.1

y12-卜=-=0.025

Yu=7=0.25,h

-h,!4n4

△h

20nh0.4+2久

yA

y2\=7=5,22-h-,—u.o

h”11114

asabove.

Problem18.22WeobtainyHandy2IbyconsideringthecircuitinFig.(a).

4Q

-------•-------—.-----•—

++

V16Q

p2QV2=0

---•---------------------------•-----

(a)

葭・6

y21=V;=34=-0-1765

Togety22andy12,considerthecircuitinFig.(b).

工=2”(4+6h)=2仙+金⑵(34/7)=%=工

y222+(34/7)24I2

24

y22=—=0.7059

-62147

---------:—L=-1=—V

i2+(34/7)'48723492

-6I,-6八

.=~—VV?=34='0-1765

,342y.2

Thus,

0.2941-0.1765

lyl=S

-0.17650.7059

TheequivalentcircuitisshowninFig.(c).Aftertransformingthecurrentsourcetoa

voltagesource,wehavethecircuitinFig.(d).

2c

8.5V2Q

(2111.889)(8.5)(0.9714)(8.5)

V==0.5454

2111.889+8.5+5.667-0.9714+14.167

V2(0.5454)2

=0.1487W

2

Problem18.23

(a)Transformingthe△subnetworktoYgivesthecircuitinFig.(a).

Itiseasytogetthezparameters

zl2=z21=2,zN=1+2=3,z22=3

△z=zHz22-Z|2z21=9—4=5

z993-z|2-2

九一%一5一丫22'y"y2i一△工-5

Thus,theequivalentcircuitisasshowninFig.(b).

32

I,=1()=-V,--V,——>50=3V,-2V(1)

55?

-23

I2=-4=-y¥,+-V2——>-20=-2V,+3V,

10=V,-1.5V2——>V,=10+1.5V2(2)

Substituting(2)into(1),

50=30+4.5V2-2V,——>V2=8V

V,=10+1.5V2=22V

(b)Fordirectcircuitanalysis,considerthecircuitinFig.(a).

Forthemainnon-referencenode,

V

10-4=———>V=12

V-V

10=」『..——>V,=10+Vo=22V

Problem18.24

(a)Converttozparameters;then,converttohparametersusingTable18.1.

zn=zi2=z2i

=60Q,z22=100Q

△z=zn,22-zi2z2i=6000-3600=2400

Az240060

h”-__—,hn=--=0.6

Z2210()Z2210()

_一1

112]=-0.6,h22=0.01

Z22Z22

Thus,

24Q0.6

|hl=

L」-0.60.01S

(b)Similarly,

zN=30flZ12=z2I=z22=20Q

=600-400=200

20020

h=一=10=一=1

1n1201220

1

^21=-l1122=——=0.05

20

Thus,

0.05S

12/13/1999

Problem18.31Wereplacethetwo-portbyitsequivalentcircuitasshownbelow.

50kQ

Zin=-p,2001150=40kC

V,=-50I](4()xl()3)=(_2xl()6)L

Fortheleftloop,

V-IO-4V,

—s--------=--I

1000,

\-10-4(-2X1061,)=10001,

Vs=10001,-2001,=8001,

V

Zin=-^=800Q

1I----------------------

Alternatively,

(1()4)(5())(50xKT)

Z=200+800-=800Q

in1+(0.5x10-5)(50x1(")

Problem18.32Togetg”andg21,considerthecircuitinFig.(a).

Y=(3j6)L_V1卷=0Q667+J。。333s

121,2

=0.8+j0.4

g2i(12-J6)1,

Togetgpandg22,considerthecircuitinFig.(b).

-12>gn4=有/=力21=O8-j().4

,2I'-JO

V2=(jlO+12ll-j6)I2

8-=iV72=jl0+i(12)r(-jk6)=2-4+j5-2fi

0.0667+j0.0333S-0.8-j0.4

0.8+j0.42.4+j5.2Q

Problem18.33Forthegparameters

L=gnv、+g12i2⑴

V1=§21V]+§2212⑵

ButV,=VS-I,ZSand

V2=-I2ZL=§21V1+§2212

V++ZI

0-g211(g22L)2

Substitutingthisinto(1),

।_(g22gli+Z-g||~~g21gl2)

-§21

or

giZ+Ag

Also,v2=g21(Vs-I,Zs)+g22I2

=§21Vs-g21ZsI]+g22I2

=§2iVs+Zs(g“Z

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论