2023届陕西省西安市八年级数学第一学期期末预测试题含解析_第1页
2023届陕西省西安市八年级数学第一学期期末预测试题含解析_第2页
2023届陕西省西安市八年级数学第一学期期末预测试题含解析_第3页
2023届陕西省西安市八年级数学第一学期期末预测试题含解析_第4页
2023届陕西省西安市八年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的个数()①②的倒数是-3③④的平方根是-4A.0个 B.1个 C.2个 D.3个2.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数 B.中位数 C.平均数 D.加权平均数3.下列各数中,是无理数的是()A. B. C.0 D.4.有大小不同的两个正方形按图、图的方式摆放.若图中阴影部分的面积,图中阴影部分的面积是,则大正方形的边长是()A. B. C. D.5.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.-33 C.-7 D.76.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断7.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是()A. B. C. D.8.如果ab>0,a+b<0,那么下面各式:①;②=1;③=-b.其中正确的是()A.①② B.①③ C.①②③ D.②③9.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为,则()A.12 B.16 C.20 D.2410.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙11.下列命题中不正确的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等12.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°二、填空题(每题4分,共24分)13.如图,在等腰三角形中,,为边上中点,多点作,交于,交于,若,,则的面积为______.14.如图,在中,,,平分交于,于,下列结论:①;②点在线段的垂直平分线上;③;④;⑤,其中正确的有____(填结论正确的序号).15.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.16.命题“在中,如果,那么是等边三角形”的逆命题是_____.17.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;18.数据1,2,3,4,5的方差是______.三、解答题(共78分)19.(8分)如图,长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,连结AD,AF,FD.(1)若△ADF的面积是,△ABD的面积是6,求△ABD的周长;(2)设△ADF的面积是S1,四边形DBGF的面积是S2,试比较2S1与S2的大小,并说明理由.20.(8分)解方程组:(1)(2)21.(8分)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是

;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是

;如图③,M为边AC延长线上一点,则BD、MF的位置关系是

;(2)请就图①、图②、或图③中的一种情况,给出证明.22.(10分)已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=38º,求∠DCB的度数;(2)若AB=5,CD=3,求△BCD的面积.23.(10分)如图,已知点和点在线段上,且,点和点在的同侧,,,和相交于点.(1)求证:;(2)当,猜想的形状,并说明理由.24.(10分)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.25.(12分)如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.26.如图所示,在,.(1)尺规作图:过顶点作的角平分线,交于;(不写作法,保留作图痕迹)(2)在上任取一点(不与点、重合),连结,,求证:.

参考答案一、选择题(每题4分,共48分)1、B【分析】化简看是否等于;计算的倒数看是否等于-3;计算的值看是否等于;计算的平方根是否等于-1.【详解】A.,错误;B.=的倒数等于-3,正确;C.,错误;D.,1的平方根是,错误.故答案为B.【点睛】本题考查了无理数的简单运算,掌握无理数混合运算的法则、倒数以及平方根的求解是解题的关键.2、A【解析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【点睛】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.3、D【解析】根据无理数的定义,可得答案.【详解】,,0是有理数,是无理数,故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.4、B【分析】添加如解题中的辅助线,设大正方形的边长为a,小正方形的边长为b,然后根据图1中阴影部分的面积等于长方形的面积减去空白部分的面积和图2中阴影部分的面积等于底乘高除以2,列出方程,即可求出b、a的值.【详解】解:添加如图所示的辅助线设大正方形的边长为a,小正方形的边长为b由图1可知S阴影==20①由图2可知S阴影=②整理①,得:整理②,得∴∴b=4或-4(不符合实际,故舍去)把b=4代入②中,解得:a=7故选B.【点睛】此题考查的是根据阴影部分的面积求正方形的边长,掌握用整式表示出阴影部分的面积和方程思想是解决此题的关键.5、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称6、B【分析】根据判别式即可求出答案.【详解】解:由题意可知:,

∴,

故选:B.【点睛】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.7、C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A是轴对称图形,∴A不符合题意,∵B是轴对称图形,∴B不符合题意,∵C不是轴对称图形,∴C符合题意,∵D是轴对称图形,∴D不符合题意,故选C.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.8、D【分析】先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴无意义,故①不正确;,故②正确,故③正确.故选D.【点睛】本题考查了二次根式的性质,熟练掌握性质是解答本题的关键.,,(a≥0,b>0).9、D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.10、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【点睛】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.11、D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.12、B【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C=故选B.考点:等腰三角形的性质.二、填空题(每题4分,共24分)13、【分析】利用等腰直角三角形斜边中点D证明AD=BD,∠DBC=∠A=45,再利用证得∠ADE=∠BDF,由此证明△ADE≌△BDF,得到BC的长度,即可求出三角形的面积.【详解】∵,AB=BC,∴∠A=45,∵为边上中点,∴AD=CD=BD,∠DBC=∠A=45,∠ADB=90,∵,∴∠EDB+∠BDF=∠EDB+∠ADE=90,∴∠ADE=∠BDF,∴△ADE≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴的面积为=,故答案为:.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.14、①②③⑤【分析】根据已知条件可得,,,是含角的,而是一个等腰三角形,进而利用等腰三进行的判定、垂直平分线的判定以及含角的直角三角形的性质可以得出、点在线段的垂直平分线上、、、,即可判断.【详解】∵,∴,∵平分交于∴∴∴,故①正确;点在线段的垂直平分线上,故②正确;∵∴,故③正确;∴在中,,故④错误;在中,在中,∴,故⑤正确.故答案是:①②③⑤.【点睛】本题图形较为复杂,涉及到知识点较多,主要考查了等腰三进行的判定、垂直平分线的判定以及含角的直角三角形的性质,属中等题,解题时要保持思路清晰.15、﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16、如果是等边三角形,那么.【解析】把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.17、50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.18、1【分析】根据方差的公式计算.方差.【详解】解:数据1,1,3,4,5的平均数为,故其方差.故答案为1.【点睛】本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共78分)19、(1)12;(2),见解析【分析】(1)长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,根据图形旋转性质,可得∠DAF=,且AD=AF,已知△ADF的面积是,可得AD=AF=5,,已知△ABD的面积是6,可得,即可求出AB和BD,进而求出△ABD的周长.(2)根据图形旋转的性质将S1和S2表示出来,分别利用了三角形面积公式和题型面积公式,再判断2S1-S2和0的大小关系,即可求解.【详解】(1)∵长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的∴∠DAF=90°那么∴AD2=25,AF=AD=5∴而,∴AB∙BD=12∴AB=3,BD=4∴故答案为:12(2)由(1)可知∴2S1=𝐴𝐷2∵∴四边形DBGF是梯形∵AB=GF,BD=AG在Rt△BAD中0∴【点睛】本题考查了图形旋转的性质,勾股定理解直角三角形,本题还利用了三角形面积公式和梯形面积公式.20、(1);(2)【分析】(1)利用加减法消元法和代入消元法求解即可;(2)先把②去分母,然后利用加减法消元法和代入消元法求解即可;【详解】(1),由②得③,③代入①得,解得,把代入③得,∴方程组的解是;(2)方程组可化为,①+②得,解得,把代入①得,解得,∴原方程组的解是.【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.21、(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析.【详解】试题分析:(1)平行;垂直;垂直;(2)选①证明BD∥MF理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF.选②证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF.选③证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.考点:1.平行线的判定;2.角平分线的性质22、(1)∠DCB=19°;(2)S⊿BCD【分析】(1)由等腰三角形两底角相等求出∠B,再由直角三角形两锐角互余即可求出∠DCB的度数;(2)先由勾股定理求得AD的长,进而求得BD长,再利用三角形的面积公式即可解答.【详解】(1)∵AB=AC,∠A=38°,∴∠B=71°,∵CD⊥AB,∴∠BDC=90°,∴∠DCB=19°;(2)∵CD⊥AB,∴∠CDA=90°,∵AC=AB=5,CD=3,∴由勾股定理解得:AD=4,∴BD=1,∴S⊿BCD=.【点睛】本题考查了等腰三角形的性质、直角三角形的性质、勾股定理、三角形面积公式,属于三角形的基础题,熟练掌握三角形的相关知识是解答的关键.23、(1)见解析;(2)是等边三角形,理由见解析【分析】(1)直接根据SAS判定定理即可证明;(2)直接根据等边三角形的判定定理即可证明.【详解】(1)证明:∵,∴,即,在和中,∴;(2)解:是等边三角形,理由如下:∵,∴,∵,∴,∴是等边三角形.【点睛】此题主要考查全等三角形的判定、等边三角形的判定,熟练进行逻辑推理是解题关键.24、没有危险,因此AB段公路不需要暂时封锁.【分析】本题需要判断点C到AB的距离是否小于250米,如果小于则有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论