高中数学说课稿_第1页
高中数学说课稿_第2页
高中数学说课稿_第3页
高中数学说课稿_第4页
高中数学说课稿_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学优秀说课稿

高中数学不像初中数学那么简单,怎样说课才能让学生真正了解所学的

知识呢?接下来我为你推荐,一起看看吧!

(一)指数函数

一、教材分析

1、教材的地位和作用:

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之

中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础

上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对

数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起

着承上启下的作用。

2、教学的重点和难点:

根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指

数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函

数与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下教学目标:

1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思

想和分类讨论思想,增强学生识图用图的能力。

3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

三、教法学法分析

1、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的

能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,

却缺乏冷静深刻。因此思考问题片面不严谨。

2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教

学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教

师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不

足,达到能力与知识的双重效果。

3、学法分析

让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活

息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,

画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历

了探究的过程,培养探究能力和抽象概括的能力。

四、教学过程:

(一)创设情景

问题1:某种细胞分裂时.,由1个分裂成2个,2个分裂成4个,一

个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数

关系,能写出与之间的函数关系式吗?

学生回答:与之间的关系式,可以表示为。

问题2:折纸问题:让学生动手折纸

学生回答:①对折的次数与所得的层数之间的关系,得出结论

②对折的次数与折后面积之间的关系(记折前纸张面积为1),得出结

问题3:《庄子。天下篇》中写到“一尺之梗,日取其半,万世不竭

学生回答:写出取次后,木棒的剩留量与与的函数关系式。

设计意图:

(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学

生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的

认知规律。从而引入两种常见的指数函数①②

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

受指数函数的形式。

(二)导入新课

引导学生观察,三个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源

于生产生活实际。函数分别以的数为底,加深对定义的感性认识,为顺

利引出指数函数定义作铺垫。

(三)新课讲授

1.指数函数的定义

一般地,函数叫做指数函数,其中是自变量,函数的定义域是R。

的含义:

设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合

适,引导学生用区间表示:

问题:指数函数定义中,为什么规定〃“如果不这样规定会出现什么情

况?

设计意图:教师首先提出问题:为什么要规定底数大于0且不等于I呢?

这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相

启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若会有什么问题?(如,则在实数范围内相应的函数值不存在)

(2)若会有什么问题?(对于,都无意义)

(3)若又会怎么样?(无论取何值,它总是1,对它没有研究的必要.)

师:为了避免上述各种情况的发生,所以规定。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义

域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样

才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

2:若函数是指数函数,则

3:已知是指数函数,且,求函数的解析式。

设计意图:加深学生对指数函数定义和呈现形式的理解。

2.指数函数的图像及性质

在同一平面直角坐标系内画出下列指数函数的图象

画函数图象的步骤:列表、描点、连线

思考如何列表取值?

教师与学生共同作出图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,

是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函

数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,

必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标

系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,

加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数的图象,观察分析图像的共同特征。由特殊到

一般,得出指数函数的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动

性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、

更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了

函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习

例1:比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函

数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。

(6)题底不同,指数也不同,可以借助中介值比较大小。

例2:已知下列不等式,比较的大小:

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对

指数函数的图像及性质的理解和记忆。

(五)课堂小结

通过本节课的学习,你学到了哪些知识?

你又掌握了哪些数学思想方法?

你能将指数函数的学习与实际生活联系起来吗?

设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习

重点,并为后续学习打下基础。

(六)布置作业

1、练习B组第2题;习题3TA组第3题

2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A

先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8

元,依次下去,...,A先生要和你签定15天的合同,你同意吗?又A先生要和

你签定30天的合同,你能签这个合同吗?

3、观察指数函数的图象,比较的大小。

(二)函数及其表示

各位评委,各位同仁:

你们好!

我今天要为大家讲的课题是〃函数的表示方法〃(第一课时)

一、教材说明

本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数

的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列

表法,以及应用函数的表示方法解决一些实际问题

1.教材所处低位和作用

学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及

的问题,而且是加深理解函数的概念的过程。特别是在信息技术的环境下

面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是

向学生渗透数形结合方法的重要过程。

2.学情分析

学生的年龄特点和认知特点

学生已具备的基本知识与技能

二、教学目标

知识与技能

1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表

法,图像法

2.能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初

步培养学生实际问题转化为数学问题的能力

过程与方法

1.通过三种方法的学习,渗透数形结合的思想

2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学

生运用数学的意识

情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习

兴趣

三、教学重点,难点

重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数

的三种不同表示方法)

难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难

把握)

四、教法分析与学法指导

本着以〃学生发展为本〃。引导学生主动参与学习,指导学生学会学习方

法,培养学生积极探索的精神,学生为主,教师指导。整个教学过程主要

用启发式教学方法,体现“分析〃一一〃研究〃一一“总结”的学习环节,并以

多媒体为教辅手段。通过创设问题情境,营造学习氛围,组织学生讨论,

让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问

题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也

完成情感目标的教育

五、教学过程

教学环节教学环节与教学内容设计意图

引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回

顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。例

如,解析法:一次函数丫=1^+13,二次函数y=ax2+bx+c等,图像法:我国

人口出生率变化曲线等;

列表法:国内生产总值表格等体会函数就在我们身边,这样的过程激发

了学生的学习热情,培养了他们的学习兴趣,丰富了血生学习方式

问题情境例L某种笔记本的单价是5元,买x(x{1,2,3,4,5})个笔记本

需要y元.试用三种表示方法表示函数y=f(x).

从简单的例题入手,初步了解函数的三种表示方法.重点是让学生明白:

确定函数定义域是非常重要的;函数的图像并不是只能为连续的曲线,也

可以是直线,折线和孤立的点组成,这里的函数图像则由一些孤立的点组

成,从而加强学生对函数图像的认识

问题情境例2下表是某校高一(1)班三名同学在高一学年度六次数学测

试的成绩及班级平均分表。请你对这三位同学高一年度的数学情况作一个

分析

王伟同学的成绩

98,87,91,92,88,95

张城同学的成绩

90,76,88,75,86,80

赵磊同学的成绩

68,65,73,72,75,82

班级平均分

88.2,78.3,85.4,80.3,75.7.82.6

让学生学会选择性的用函数的三种表示方法;先让学生分别用三种函数

表示方法试试看,即可见这题最好是通过图像进行分析;通过不同的分析

法,更能突出“形〃的优势,并让学生明白并不数所有的函数都能解析法表

问题讨论观察前面两个例子,说一说三种表示法各自的优点?通过实例

展示,对学生来说理解函数的三种表示方法是比较轻松的,但对于三种表

示法的优点,学生未必能够准确的描述,通过学生讨论与教师的评价过程,

能够培养学生用数学语言叙述问题和归纳总结的能力,同时考察同学的自

学能力

课堂小结我们这节课的主要内容是什么?

其中三种函数表示方法各自的优点回顾整理这节课所学知识,能够是知

识更加的料理分明,便于记忆

布置作业课本P23习题1,3,4;

2(选作)学生经过以上几个环节的学习,已经初步掌握了函数的三种表

示法,有待进一步提高认知水平,因此针对学生素质的差异,设计了有层

次的作业,留给课后自主探究,这样即使学生掌握了基础知识,又有余力

的学生有发挥空间,从而达到拔尖和减负的目的

六、教学设计说明

本节课实际遵循新课标过程的基本理念:发展学生的教学应用知识,体

现数学的文化价值;注意信息技术与数学课程的整合,是学生学习过程中

体会用数学的思考方法去解决问题。:以上,我仅从说教材,说学情,说

教法,说学法,说教学过程上说明了〃教什么〃和''怎么教〃,阐明了〃为什

么这样教〃。希望各位专家领导对本堂说课提出宝贵意见

八、板书设计

函数的表示方法

、知识回顾

二、函数的三种表示方法

1、解析法:

2、列表法:

3、图像法:

三、强化新知

例3:

例4:

四、小结及作业

(三)函数与方程

教材分析:

函数作为高中的重点知识有着广泛的应用,与其他数学内容有着有机联

系。课本选取探究具体的一元二次方程的根与其对应的二次函数的图像与

横轴的交点的关系作为本节内容的入口,其意图是让学生从熟悉的环境中

发现新知识,使新知识与原有知识形成联系。本节设计特点由特殊到一般,

由易到难,这符合学生的认知规律。课堂体现的数学思想是“数形结合〃和

“转化〃思想。充分体现了函数图像和性质的应用。因此把握课本要从三方

面入手:新旧知识的联系,学生认知规律,数学思想和方法。

学情分析:

1、现有知识储备:(1)常用函数的图像和性质(2)常见方程的解法;(3)

函数的图像变换

2、现有能力特征:具有一定归纳、概括、类比、抽象思维能力

3、现有情感态度对高次或超越方程的解法具有强烈求知欲和渴望探究

的积极情感态度教学目标:

知识与技能:(1)结合二次函数的图像,掌握函数零点的概念,会求简

单函数的零点

(2)理解方程的根和函数零点的关系

(3)理解函数的零点存在的判定条件,能利用函数性质判定方程解的存

在性

过程与方法:通过本节的学习让学生掌握由“特殊到一般〃的认知规律,

在今后学习中利用这一规律探索更多的未知世界

情感态度与价值观:在函数与方程的联系中体验数学中的转化思想和函

数思想的意义及价值教学重点:理解方程的根与函数零点的关系,体会

函数与方程的思想,掌握方程解的存在性的判定方法。

教学难点:方程解的存在性的判定。

重、难点突破措施:

(1)由熟到生,以情激人

创设情境中,由熟到生解方程开题,扣人心弦,层层探究,步步为营,

丝丝入扣,激发热情。

(2)数形结合,分类讨论

通过简单实例,数形结合,探究总结规律;利用分类讨论的数学思想突

破重难点。

(3)合作探究,分层提高

利用合作探究、分层训练和分层作业达到因材施教的效果。

教学过程设计:

一、问题引入:

方程和函数是中学代数的重要内容。在初中我们曾学习了一元一次方

程、一元二次方程的解法并掌握了一些方程的求解公式。实际上绝大部分

方程没有求解公式,那么我们如何来解方程的根呢?比如说解方程?

学生会从函数的单调性的角度提出无实数解。教师点题:方程的解和函

数的性质有重要的联系,本节课我们就来探讨利用函数性质判定方程解的

存在问题。书写标题

二、探究新知:

(一)、探究活动一:填空一一

①方程的解为,函数的图象与X轴有个交点,坐标为•②方程的

解为,函数的图象与X轴有个交点,坐标为.

③方程的解为,函数的图象与X轴有个交点,坐标为.

结论一:函数与轴交点的横坐标是相应方程的根

思考:对于一般的函数与方程是否也有上述的结论成立呢?

④方程的解为,函数的图象与X轴有个交点,坐标为.⑤方程的

解为,函数的图象与X轴有个交点,坐标为.

⑥方程的解为,函数的图象与X轴有个交点,坐标为.

结论二:

(二)定义:函数的零点一一我们把函数的图像与横轴交点的横坐标称为

这个函数的零点思考:函数y=f(x)的零点、方程f(x)=O的实数根、函数

y=f(x)的图象与x轴交点的横坐标,三者有什么关系?

结论二:函数的零点函数图像与x轴交点的横坐标方程的解

巩固练习1:求下列函数的零点.

小结::求函数的零点的方法,强调化归与转化的思想

(三)探究活动二:(2)解方程:,

说明:学生解不出方程的根,但也不能判定方程是否无根,教师引入下

一个课题:如何判断一个方程在给定区间上是否有解呢?

探究:观察二次函数的图像:

在[-2,1]上,我们发现函数f(x)在区间(-2,1)内有零

点x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论