版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.校乒乓球队员的年龄分布如下表所示:年龄(岁)人数对于不同的,下列关于年龄的统计量不会发生改变的是()A.众数,中位数 B.众数,方差 C.平均数,中位数 D.平均数,方差2.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需个月,则根据题意可列方程中错误的是()A. B. C. D.3.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.94.已知a2+a﹣4=0,那么代数式:a2(a+5)的值是()A.4 B.8 C.12 D.165.若,则下列不等式正确的是()A. B. C. D.6.下列交通标识不是轴对称图形的是()A. B. C. D.7.9的算术平方根是()A.3 B.9 C.±3 D.±98.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,﹣1) D.(2,1)9.已知,则=()A. B. C. D.10.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°11.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少个,一个学徒工与两个熟练工每天共可制造个零件,求一个学徒工与一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为()A. B.C. D.12.在中,,则的长为()A.2 B. C.4 D.4或二、填空题(每题4分,共24分)13.计算:__________.14.如图,∠MON=30°,点A1、A2、A3、……在射线ON上,点B1、B2、B3、……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为__________15.如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=_____cm.16.如图,在中,,是的平分线,⊥于点,点在上,,若,,则的长为_______.17.表中给出了直线上部分点的坐标值.02431则直线与两坐标轴围成的三角形面积等于______________.18.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____三、解答题(共78分)19.(8分)如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.20.(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“湘一四边形”.(1)已知:如图1,四边形是“湘一四边形”,,,.则,,若,,则(直接写答案)(2)已知:在“湘一四边形”中,,,,.求对角线的长(请画图求解),(3)如图(2)所示,在四边形中,若,当时,此时四边形是否是“湘一四边形”,若是,请说明理由:若不是,请进一步判断它的形状,并给出证明.21.(8分)如图,在四边形ABCD中,,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点.(2)若,且,求AP的长.(3)在(2)的条件下,若线段AE上有一点Q,使得是等腰三角形,求的长.22.(10分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.23.(10分)(1)(2)24.(10分)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出关于直线MN对称的;(2)写出的长度;(3)如图(2),A,C是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.25.(12分)化简并求值:,其中26.如图,在中,,,点在上,且,.(1)求证:;(2)求的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】先求出总人数,再确定不变的量即可.【详解】人,一共有个人,关于年龄的统计量中,有个人岁,∴众数是15,中位数是15,对于不同的,统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.2、A【分析】设甲队单独完成全部工程需个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:;A、,与上述方程不符,所以本选项符合题意;B、可变形为,所以本选项不符合题意;C、可变形为,所以本选项不符合题意;D、的左边化简得,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.4、D【分析】由a2+a﹣4=0,变形得到a2=-(a-4),a2+a=4,先把a2=-(a-4)代入整式得到a2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a2+a-20),再把a2+a=4代入计算即可.【详解】∵a2+a﹣4=0,∴a2=-(a-4),a2+a=4,a2(a+5)=-(a-4)(a+5)=-(a2+a-20)=−(4−20)=16,故选D【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键5、B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m>n,∴m-2>n-2,∴选项A不符合题意;
∵m>n,∴,∴选项B符合题意;∵m>n,∴4m>4n,∴选项C不符合题意;
∵m>n,∴-5m<-5n,∴选项D不符合题意;
故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6、C【解析】平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形称为轴对称图形,利用轴对称图形的定义即可求解.【详解】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点睛】本题主要考查的是轴对称图形的定义,解此题的关键是寻找对称轴,图形沿对称轴折叠后可完全重合.7、A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【详解】∵12=9,∴9的算术平方根是1.故选A.【点睛】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.8、D【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【详解】根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选D.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9、B【解析】因为,所以x<0;可得中,y<0,根据二次根式的定义解答即可.【详解】∵,∴x<0,又成立,则y<0,则=-y.故选B.【点睛】此题根据二次根式的性质,确定x、y的符号是解题的关键.10、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x
∵AC=DC=DB
∴∠CAD=∠CDA=2x
∴∠ACB=180°-2x-x=105°
解得x=25°.
故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.11、A【分析】根据题意找到两个等量关系列出方程组即可.【详解】解:一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题中:一个学徒工每天制造的零件比一个熟练少个,以及一个学徒工与两个熟练工每天共可制造个零件可得方程组:.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.12、D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.二、填空题(每题4分,共24分)13、.【详解】解:===a-1故答案为:a-1.14、2【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…则△An-1BnAn+1的边长为2n-1,即可得出答案.【详解】∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△An-1BnAn+1的边长为2n-1.则△A2019B2019A2020的边长为2.
故答案是2.【点睛】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15、1.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BC=BE,然后求出△ADE的周长=AB.【详解】∵∠C=90∘,BD平分∠CBA,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,∵∴Rt△BCD≌Rt△BED(HL),∴BC=BE,∴△ADE的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB,∵△ADE的周长为1cm,∴AB=1cm.故答案为1cm.【点睛】本题考查了角平分线的性质和等腰直角三角形,熟练掌握这两个知识点是本题解题的关键.16、【分析】由AD为角平分线,利用角平分线定理得到DE=DC,再由BD=DF,利用HL得到三角形FCD与三角形BDF全等,利用全等三角形对应边相等得出CD=BE,利用AAS得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,由AB=AE+EB,得出AB=AF+2BE.再利用直角三角形的面积公式解答即可.【详解】解:是的平分线,,,,在和中,,,,;在和中,,,,,,,即,解得:.故答案:.【点睛】此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.17、【分析】利用待定系数法求出直线1的解析式,得出与坐标轴的交点坐标,进而求解即可.【详解】设直线1的解析式为,
∵直线1过点(0,1)、(2,-1),
∴,解得,∴直线1的解析式为,
∵y=0时,;时,y=1,
∴直线1与轴的交点坐标是(1,0),与y轴的交点坐标是(0,1),∴直线1与两坐标轴围成的三角形的面积等于.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征,利用待定系数法求直线的解析式,三角形的面积,正确求出直线1的解析式是解题的关键.18、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.三、解答题(共78分)19、(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.20、(1)85°,115°,1;(2)AC的长为或;(1)四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形,理由见解析【分析】(1)连接BD,根据“湘一四边形”的定义求出∠B,∠C,利用等腰三角形的判定和性质证明BC=DC即可.
(2)分两种情形:①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E.②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,分别求解即可解决问题.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.如图2中,作CN⊥AD于N,AM⊥CB于M.利用全等三角形的性质证明AD=BC即可解决问题.【详解】解:(1)如图1中,连接BD.
∵四边形ABCD是湘一四边形,∠A≠∠C,
∴∠B=∠D=85°,
∵∠A=75°,
∴∠C=160°-75°-2×85°=115°,
∵AD=AB,
∴∠ADB=∠ABD,
∵∠ADC=∠ABC,
∴∠CDB=∠CBD,
∴BC=CD=1,
故答案为85°,115°,1.
(2)①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E,
∵∠DAB=60°,
∴∠E=10°,
又∵AB=4,AD=1
∴BE=4,AE=8,DE=5,
∴CE=,
∴BC=BE-CE=4,
∴AC=,
②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,
∵∠DAB=∠BCD=60°,
又∵AB=4,AD=1,
∴AE=,DE=BF=,
∴BE=DF=,
∴CF=DF•tan10°=×,
∴BC=CF+BF=,
∴AC=,
综合以上可得AC的长为或.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.
理由:如图2中,作CN⊥AD于N,AM⊥CB于M.
∵∠ADB=∠ABC,
∴∠CDN=∠ABM,
∵∠N=∠M=90°,CD=AB,
∴△CDN≌△ABM(AAS),
∴CN=AM,DN=BM,
∵AC=CA,CN=AM,
∴Rt△ACN≌Rt△CAM(HL),
∴AN=CM,∵DN=BM,
∴AD=BC,∵CD=AB,
∴四边形ABCD是平行四边形.【点睛】此题考查四边形综合题,“湘一四边形”的定义,全等三角形的判定和性质,平行四边形的判定,解直角三角形,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.21、(1)证明见详解;(2)5;(3)4或或.【分析】(1)由,得∠B=∠ECP,由点P为AE的中点,得AP=EP,根据AAS可证∆CEP≅∆BAP,进而得到结论;(2)在Rt∆DCP中,利用勾股定理,可得CP的长,即BP的长,从而在Rt∆ABP中,利用勾股定理,即可求解;(3)若是等腰三角形,分3种情况讨论:①当AQ=AB时,②当BQ=AB时,③当AQ=BQ时,分别根据等腰三角形的性质和勾股定理求出AQ的值即可.【详解】(1)∵,∴∠B=∠ECP,∵点P为AE的中点,∴AP=EP,在∆CEP和∆BAP中,∵(对顶角相等)∴∆CEP≅∆BAP(AAS)∴BP=CP,∴点P也是BC的中点;(2)∵,∴,∴,∴BP=CP=3,∴在Rt∆ABP中,(3)若是等腰三角形,分3种情况讨论:①当AQ=AB时,如图1,∵AB=4,∴AQ=4;②当BQ=AB时,如图2,过段B作BM⊥AE于点M,∵在Rt∆ABP中,AB=4,BP=3,AP=5,∴BM=,∵在Rt∆ABM中,,∴,∵BQ=AB,BM⊥AE,∴MQ=AM=,∴AQ=2×=,③当AQ=BQ时,∴∠QAB=∠QBA,∵,∴∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴BQ=PQ,∴AQ=BQ=PQ=AP=×5=;综上所述,AQ的长为:4或或.【点睛】本题主要考查全等三角形的判定和性质,等腰三角形的判定和性质以及勾股定理,根据题意,分别画出图形,熟练运用等腰三角形的性质,是解题的关键.22、(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.【分析】(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.【详解】(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农产品品牌推广与营销合同
- 2024年度国际市场品牌推广合同
- 2024年度压路机行业培训与人才交流合同
- 软骨替代品市场发展现状调查及供需格局分析预测报告
- 2024年度0KV变电站工程安全防护合同
- 球拍用保护罩市场发展预测和趋势分析
- 2024年度建筑设计与监理合同
- 2024年度兰州土地使用权转让合同
- 合成材料制圣诞树市场发展现状调查及供需格局分析预测报告
- 2024年度品牌方与带货主播合作推广特定商品的合同范本
- 小数乘除法竖式计算专项练习题大全(每日一练共15份)
- 天津市和平区2024-2025学年九年级上学期期中考试英语试题
- 政府采购代理服务方案
- 2024版抗菌药物DDD值速查表
- 卡牌行业专题报告:热潮背后的IP效应与市场潜力
- 浙江金华武义县融媒体中心招聘事业编制采编工作人员高频难、易错点500题模拟试题附带答案详解
- 猜想04整式的乘法与因式分解(易错必刷30题10种题型专项训练)
- 北师大版(2024新版)七年级上册数学期中学情评估检测试卷(含答案解析)
- 药房质量管理体系文件的管理制度
- 教育心理学-形考作业4(第十至十一章)-国开-参考资料
- 课内阅读(专项训练)-2024-2025学年统编版语文四年级上册
评论
0/150
提交评论