版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°2.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是()A.20 B.16 C.34 D.253.如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是()A.经过点B和点E B.经过点B,不一定经过点EC.经过点E,不一定经过点B D.不一定经过点B和点E4.下列函数中是反比例函数的是()A. B. C. D.5.下列一元二次方程中,没有实数根的是().A. B.C. D.6.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.17.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣ C.2 D.﹣28.若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则k的值为()A.-2 B.12 C.6 D.-69.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.410.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知两个相似三角形的周长比是,它们的面积比是________.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.13.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.14.如图,一次函数与的图象交于点,则关于的不等式的解集为______.15.点是二次函数图像上一点,则的值为__________16.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.17.如图,半圆的半径为4,初始状态下其直径平行于直线.现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止.在这个滚动过程中,圆心运动路径的长度等于_________.18.如图,矩形对角线交于点为线段上一点,以点为圆心,为半径画圆与相切于的中点交于点,若,则图中阴影部分面积为________________.三、解答题(共66分)19.(10分)先化简,再求值:(x-1)÷(x-),其中x=+120.(6分)如图,在△ABC中,D为BC边上的一点,且AC=,CD=4,BD=2,求证:△ACD∽△BCA.21.(6分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.22.(8分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.23.(8分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?24.(8分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.25.(10分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.26.(10分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)作出△ABC关于y轴对称的,并写出的坐标;(2)作出△ABC绕点O逆时针旋转90°后得到的,并求出所经过的路径长.
参考答案一、选择题(每小题3分,共30分)1、B【详解】∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.【点睛】本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键2、C【分析】作BM⊥x轴于M.只要证明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解决问题.【详解】解:作轴于.四边形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面积,故选:.【点睛】本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.3、B【分析】由条件可知BC垂直平分AD,可证△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°则A、B、D、C四点共圆,即可得结论.【详解】解:如图:设AD、BC交于M∵AC=CD,AD⊥BC∴M为AD中点∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四点共圆∴优弧CAD经过B,但不一定经过E故选B【点睛】本题考查了四点共圆,掌握四点共圆的判定是解题的关键.4、B【分析】由题意直接根据反比例函数的定义对下列选项进行判定即可.【详解】解:根据反比例函数的定义可知是反比例函数,,是一次函数,,是二次函数,都要排除.故选:B.【点睛】本题考查反比例函数的定义,注意掌握反比例函数解析式的一般形式,也可以转化为的形式.5、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、C【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.7、C【分析】先求出点A1的坐标,再根据旋转的性质求出点A1的坐标,然后根据图象上点的纵坐标循环规律即可求出m的值.【详解】当y=0时,x1﹣3x=0,解得:x1=0,x1=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A1的坐标为(6,0).∵1010÷6=336……4,∴当x=4时,y=m.由图象可知:当x=1时的y值与当x=4时的y值互为相反数,∴m=﹣(1×1﹣3×1)=1.故选:C.【点睛】此题考查的是探索规律题和求抛物线上点的坐标,找出图象上点的纵坐标循环规律是解决此题的关键.8、D【分析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数y=(k≠0)的图象经过点(-2,3),
∴k=-2×3=-1.
故选:D.【点睛】此题考查了反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9、D【解析】如图连接OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选D.10、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.二、填空题(每小题3分,共24分)11、【解析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:1.故答案为1:1.本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.12、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.13、80°.【分析】由将△OAB绕点O逆时针旋转100°得到△OA1B1,可求得∠A1OA的度数,继而求得答案.【详解】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案为:80°.【点睛】此题考查了旋转的性质.注意找到旋转角是解此题的关键.14、【分析】先把代入求出n的值,然后根据图像解答即可.【详解】把代入,得-n-2=-4,∴n=2,∴当x<2时,.故答案为:x<2.【点睛】本题主要考查一次函数图像上点的坐标特征,以及一次函数和一元一次不等式的关系、数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15、1【分析】把点代入即可求得值,将变形,代入即可.【详解】解:∵点是二次函数图像上,
∴则.∴
故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.16、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.17、【分析】由图可知,圆心运动路径的长度主要分两部分求解,从初始状态到垂直状态,圆心一直在一条直线上;从垂直状态到重合状态,圆心运动轨迹是圆周,计算两部分结果,相加即可.【详解】由题意知:半圆的半径为4,∴从初始状态到垂直状态,圆心运动路径的长度=.∴从垂直状态到重合状态,圆心运动路径的长度=.即圆心运动路径的总长度=.故答案为.【点睛】本题主要考查了弧长公式和圆周公式,正确掌握弧长公式和圆周公式是解题的关键.18、【分析】连接BG,根据切线性质及G为中点可知BG垂直平分AO,再结合矩形性质可证明为等边三角形,从而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三边关系求出AB,然后求出和扇形BEF的面积,两者相减即可得到阴影部分面积.【详解】连接BG,由题可知BG⊥OA,∵G为OA中点,∴BG垂直平分OA,∴AB=OB,∵四边形ABCD为矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即为等边三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案为:.【点睛】本题考查了扇形面积的计算,矩形的性质,含30°角的直角三角形的三边关系以及等边三角形的判定与性质,较为综合,需熟练掌握各知识点.三、解答题(共66分)19、1+【分析】先化简分式,然后将x的值代入计算即可.【详解】解:原式=(x−1)÷,当x=+1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20、证明见解析.【分析】根据AC=,CD=4,BD=2,可得,根据∠C=∠C,即可证明结论.【详解】解:∵AC=,CD=4,BD=2∴,∴∵∠C=∠C∴△ACD∽△BCA.【点睛】本题考查了相似三角形的性质和判定,掌握知识点是解题关键.21、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.22、(1)证明见解析;(2)BM=MC.理由见解析.【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得,从而得到,即可得解.【详解】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴,∴,∴BM=MC.23、(1)详见解析,,,;(2)50;(3)【分析】(1)根据题意再表格中得出B、C、D,并顺次连接、,,各点即可画出旋转后的图形,写出点,,的坐标即可.(2)可证得四边形ABCD是正方形,根据正方形的面积公式:正方形的面积=对角线×对角线÷2即可得出结果.(3)观察(1)可以得出规律,旋转后的点的坐标和旋转前的点横纵坐标位置相反,且纵坐标变为相反数.【详解】解:(1)如图,,,(2)由旋转性质可得:,∴,∴四边形ABCD为正方形,∴(3)根据题(1)可得出【点睛】本题主要考查的是作图和旋转的性质,根据题目要求准确的作出图形是解题的关键.24、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;综上所述:点P的坐标为:或.【点睛】本题考查反比例函数与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国统考2024高考历史一轮复习第十二单元近现代中国的思想解放理论成果及科技文化第33讲20世纪以来中国重大思想理论成果课时作业含解析新人教版
- 乡村俱乐部网球场施工合同
- 文化传媒行业聘用合同范本
- 书店装修泥工施工合同模板
- 学校电力设施施工合同样本
- 工厂车间内墙装修刮瓷合同
- 地热能源开发钻探合同
- 船舶修造劳务分包协议
- 建筑工程师招聘合同样本
- 外国设计师家居行业聘用合同
- 2024-2030年飞机租赁行业市场发展分析及发展趋势前景预测报告
- 2025届高考英语3500词汇基础+提升练01含解析
- 食源性疾病培训内容知识
- LED显示屏拆除方案
- 教科版六年级科学上册期中测试卷
- 2024年中级经济师(金融)《专业知识与实务》考前必刷必练题库500题(含真题、必会题)
- 2024江苏省铁路集团限公司春季招聘24人高频考题难、易错点模拟试题(共500题)附带答案详解
- (2024年)剪映入门教程课件
- 大班-数学-加号减号-课件(基础版)
- 中大班社会领域《我的情绪小屋》课件
- DB44-T 1661-2021《河道管理范围内建设项目技术规程》-(高清现行)
评论
0/150
提交评论