江苏省昆山市、太仓市2022-2023学年数学九上期末复习检测模拟试题含解析_第1页
江苏省昆山市、太仓市2022-2023学年数学九上期末复习检测模拟试题含解析_第2页
江苏省昆山市、太仓市2022-2023学年数学九上期末复习检测模拟试题含解析_第3页
江苏省昆山市、太仓市2022-2023学年数学九上期末复习检测模拟试题含解析_第4页
江苏省昆山市、太仓市2022-2023学年数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.:12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.13.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;4.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)5.一张圆心角为的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知,则扇形纸板和圆形纸板的半径之比是()A. B. C. D.6.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.如图,在平面直角坐标系中,点,将沿轴向右平移得,此时四边形是菱形,则点的坐标是()A. B. C. D.9.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A. B. C. D.10.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.11.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.12.下列四个点中,在反比例函数的图象上的是()A.(3,﹣2) B.(3,2) C.(2,3) D.(﹣2,﹣3)二、填空题(每题4分,共24分)13.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)14.sin245°+cos60°=____________.15.抛物线与y轴的交点做标为__________.16.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______,阴影部分面积为(结果保留π)________.17.如图,D、E分别是△ABC的边AB,AC上的点,=,AE=2,EC=6,AB=12,则AD的长为_____.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.三、解答题(共78分)19.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.20.(8分)小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.(1)要使这两个正方形的面积之和等于,小明该怎么剪?(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.21.(8分)如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于E.(1)求证DE⊥BC;(2)若⊙O的半径为5,BE=2,求DE的长度.22.(10分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到,两个书店做志愿者服务活动.(1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)23.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为(元),请你分别用含的代数式来表示销售量(件)和销售该品牌玩具获得利润(元),并把结果填写在表格中:销售单价(元)销售量(件)销售玩具获得利润(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?24.(10分)如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.25.(12分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.26.如图,在平面直角坐标系中,一次函数与轴和轴分别交于点,点,与反比例函数在第一象限的图象交于点,点,且点的坐标为.(1)求一次函数和反比例函数解析式;(2)若的面积是8,求点坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:1.故选:B.【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.2、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.3、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【详解】∵多边形从一个顶点出发可引出4条对角线,

∴,

解得:,

∴内角和;任何多边形的外角和都等于360.故选:A.【点睛】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.4、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.5、A【分析】分别求出扇形和圆的半径,即可求出比值.【详解】如图,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圆形纸板的半径比是:=故选:A.【点睛】本题考查了正方形性质、圆内接四边形性质;解此题的关键是求出扇形和圆的半径,题目比较好,难度适中.6、A【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点睛】本题考查三角函数的定义,熟记定义是解题的关键.7、B【解析】先根据根的判别式得出方程有两个不相等的实数根,设方程x2+bx-2=0的两个根为c、d,根据根与系数的关系得出c+d=-b,cd=-2,再判断即可.【详解】x2+bx−2=0,△=b2−4×1×(−2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx−2=0的两个根为c、d,则c+d=−b,cd=−2,由cd=−2得出方程的两个根一正一负,由c+d=−b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故答案选:B.【点睛】本题考查的知识点是根的判别式及根与系数的关系,解题的关键是熟练的掌握根的判别式及根与系数的关系.8、A【分析】首先由平移的性质,得出点C的纵坐标,OA=DE=3,AD=OE,然后根据勾股定理得出CD,再由菱形的性质得出点C的横坐标,即可得解.【详解】由已知,得点C的纵坐标为4,OA=DE=3,AD=OE∴∵四边形是菱形∴AD=BC=CD=5∴点C的横坐标为5∴点C的坐标为故答案为A.【点睛】此题主要考查平面直角坐标系中,根据平移和菱形的性质求解点坐标,熟练掌握,即可解题.9、D【解析】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.10、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.11、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.12、A【分析】根据点在曲线上点的坐标满足方程的关系,将各点坐标代入验算,满足的点即为所求【详解】点(3,﹣2)满足,符合题意,点(3,2)不满足,不符合题意,点(2,3)不满足,不符合题意,点(﹣2,﹣3)不满足,不符合题意故选A.二、填空题(每题4分,共24分)13、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.14、1【分析】利用特殊三角函数值代入求解.【详解】解:原式=【点睛】熟记特殊的三角函数值是解题的关键.15、(0,9)【分析】令x=0,求出y的值,然后写出交点坐标即可.【详解】解:x=0时,y=-9,

所以,抛物线与y轴的交点坐标为(0,-9).

故正确答案为:(0,-9).【点睛】本题考查二次函数图象上点的坐标特征,解题关键是熟练掌握二次函数图象与坐标轴的交点的求解方法.16、相切6-π【详解】∵正方形ABCD是正方形,则∠C=90°,∴D与⊙O的位置关系是相切.∵正方形的对角线相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=4,∴CE=DE=BE=2梯形OEDC的面积=(2+4)×2÷2=6,扇形OEC的面积==π,∴阴影部分的面积=6-π.17、1【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=1,故答案为:1.【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.18、1【解析】连接BD.根据圆周角定理可得.【详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.三、解答题(共78分)19、(1);(2)【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是;(2)画树状图分析如下:共有16种等可能的结果,小明和小红恰好选择同一个补给站的结果有4种,∴小明和小红恰好选择同一个补给站的概率为=.【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握概率公式是解题的关键.20、(1)剪成40cm和80cm的两段;(2)小刚的说法正确,理由见解析.【分析】(1)设剪成一段长为xcm,则另一段长为(120-x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于500cm2建立方程求出其解即可;(2),如果方程有解就说明小刚的说法错误,否则正确.【详解】(1)设剪成一段长为xcm,则另一段长为(120-x)cm,依题意得,解得,,∴把一根120cm长的铁丝剪成40cm和80cm的两段,围成的正方形面积之和为500cm2;(2)小刚的说法正确,因为整理得,,∵△=-1600<0,∴两个正方形的面积之和不可能等于400cm2,∴小刚的说法正确.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,根的判别式的运用,解答本题时找到等量关系建立方程和运用根的判别式是关键.21、(1)证明见解析;(2)DE=4【分析】(1)连接OD,DE是切线,则OD⊥DE,则OD是△ABC的中位线,可得OD∥BC,据此即可求证;(2)过B作OD的垂线,垂足为F,证明四边形DFBE为矩形,Rt△OFB中用勾股定理即可求得DE的长度.【详解】证明(1)连接OD∵DE切⊙O于点D∴OD⊥DE∴∠ODE=90°∵D是AC的中点,O是AB的中点∴OD是△ABCD的中位线∴OD∥BC∴∠DEC=90°∴DE⊥BC(2)过B作BF⊥OD∵BF⊥OD∴∠DFB=90°∴∠DFB=∠DEB=∠ODE=90°∴四边形DFBE为矩形∴DF=BE=2∴OF=OD-DF=5-2=3∴DE=BF=4【点睛】本题考查了圆的切线的性质、三角形中位线的判定和性质、矩形的判定和性质、直角三角形的性质,辅助线是关键.22、(1);(2)【分析】(1)用树状图列出所有可能的情况,然后即可得出其概率;(2)用树状图列出所有可能的情况,然后即可得出其概率.【详解】(1)(2人选择不同的书店)(2)(3人选择同一书店)【点睛】此题主要考查利用树状图求概率,熟练掌握,即可解题.23、(1)1000-10x,-10x2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.【分析】(1)根据销售单价每涨1元,就会少售出10件玩具,再列出销售量y(件)和销售玩具获得利润(元)的代数式即可;(2)令(1)所得销售玩具获得利润(元)的代数式等于10000,然后求得x即可;(3)、先求出x的取值范围,然后根据(1)所得销售玩具获得利润(元)的代数式结合x的取值范围,运用二次函数求最值的方法求出最大利润即可.【详解】解:(1)∵根据销售单价每涨1元,就会少售出10件玩具,∴销售量y(件)为:600-10(x-40)=1000-10x;销售玩具获得利润(元)为:[600-10(x-40)](x-30)=-10x2+1300x-30000故答案为:1000-10x,-10x2+1300x-30000;(2)令-10x2+1300x-30000=10000,解得:x=50或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)根据题意得:解得:44≤x≤46由w=-10x2+1300x-30000=-10(x-65)2+12250∵-10<0,对称轴是直线x=65.∴当44≤x≤46时,w随增大而增大∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.24、(1);(2);(3)【分析】(1)利用对称轴和A点坐标可得出,再设,代入C点坐标,求出a的值,即可得到抛物线解析式;(2)求C点和E点坐标可得出CE的长,再联立直线与抛物线解析式,得到,设点P,Q的横坐标分别为,利用根与系数的关系求出,再根据的面积可求出k的值,将k的值代入方程求出,即可得到P、Q的坐标;(3)先求直线AC解析式,再联立直线PQ与直线AC,求出交点G的坐标,设,,过G作MN∥y轴,过K作KN⊥MN于N,过K'作K'M⊥MN于M,然后证明△MGK'≌△NKG,推出MK'=NG,MG=NK,建立方程求出的坐标,再代入抛物线解析式求出m的值,即可得到K的坐标.【详解】解:(1)∵抛物线对称轴,点∴设抛物线的解析式为将点代入解析式得:,解得,∴抛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论