版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省宁化城东中学九年级数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎 B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎 D.甲、乙、丙都说谎2.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.3.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和14.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个 B.2个 C.3个 D.4个5.下列事件中,是必然事件的是()A.随意翻倒一本书的某页,这页的页码是奇数. B.通常温度降到以下,纯净的水结冰.C.从地面发射一枚导弹,未击中空中目标. D.购买1张彩票,中奖.6.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米7.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10° B.30° C.40° D.70°8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃9.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是()A.2 B.3 C.4 D.510.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m11.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.412.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是()A. B.C. D.二、填空题(每题4分,共24分)13.如果,那么的值为______.14.计算:=_________.15.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm1.16.如果3是数和6的比例中项,那么__________17.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________18.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.三、解答题(共78分)19.(8分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.20.(8分)如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点.连接,且.(1)求的值;(2)过点作,交反比例函数(其中)的图象于点,连接交于点,求的值.21.(8分)(1)计算:2cos60°+4sin60°•tan30°﹣6cos245°(2)解方程:22.(10分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.23.(10分)计算:2cos45°﹣tan60°+sin30°﹣tan45°24.(10分)如图,点D,E分别在△ABC的AB,AC边上,且DE∥BC,AG⊥BC于点G,与DE交于点F.已知,BC=10,AF=1.FG=2,求DE的长.25.(12分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).(1)求一次函数和反比例函数的表达式;(2)直接写出关于x的不等式2x+b>的解集;(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.26.如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】分情况,依次推理可得.【详解】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查推理能力,关键在于假设法,推出矛盾是否即可判断对错.2、B【分析】将A、B、C三点坐标分别代入反比例函数的解析式,求出的值比较其大小即可【详解】∵点,,都在反比例函数的图象上,∴分别把x=-3、x=-2、x=1代入得,,∴故选B【点睛】本题考查了反比例函数的图像和性质,熟练掌握相关的知识点是解题的关键.3、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.4、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5、B【分析】根据必然事件的定义判断即可.【详解】A、C、D为随机事件,B为必然事件.故选B.【点睛】本题考查随机事件与必然事件的判断,关键在于熟记概念.6、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.7、D【分析】由旋转的性质可得旋转角为∠AOC=70°.【详解】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.【点睛】本题考查了旋转的性质,解决本题的关键是熟练掌握旋转的意义和性质,能够有旋转的性质得到相等的角.8、B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.9、C【分析】①根据开口方向,对称轴的位置以及二次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;②根据对称轴为即可得出结论;③利用顶点的纵坐标即可判断;④利用时的函数值及a,b之间的关系即可判断;⑤利用时的函数值,即可判断结论是否正确.【详解】①∵抛物线开口方向向上,.∵对称轴为,∴.∵抛物线与y轴的交点在y轴的负半轴,∴,∴,故错误;②∵对称轴为,∴,,故正确;③由顶点的纵坐标得,,∴,∴,∴,故正确;④当时,,故正确;⑤当时,,故正确;所以正确的有4个,故选:C.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.10、C【详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.11、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,3,x,1,1,2.已知这组数据的平均数是3,
∴x=3×2-4-4-3-1-1-2=3,
∴这一组数从小到大排列为:3,4,4,3,1,1,2,
∴这组数据的中位数是:3.
故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.12、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】利用因式分解法求出的值,再根据可得最终结果.【详解】解:原方程可化为:,解得:或,∵,∴.故答案为:.【点睛】本题考查的知识点是解一元二次方程以及锐角三角函数的定义,熟记正弦的取值范围是解此题的关键.14、7【分析】本题先化简绝对值、算术平方根以及零次幂,最后再进行加减运算即可.【详解】解:=6-3+1+3=7【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.15、35π.【解析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm1.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、【分析】根据比例的基本性质知道,在比例里两个外项的积等于两个内项的积.【详解】因为,在比例里两个外项的积等于两个内项的积,所以,6x=3×3,x=9÷6,x=,故答案为:.【点睛】本题考查了比例中项的概念,熟练掌握概念是解题的关键.17、【分析】根据题意可点G在以AB为直径的圆上,设圆心为H,当HGC在一条直线上时,CG的值最值,利用勾股定理求出CH的长,CG就能求出了.【详解】解:点的运动轨迹为以为直径的为圆心的圆弧。连结GH,CH,CG≥CH-GH,即CG=CH-GH时,也就是当三点共线时,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案为:【点睛】本题考查了矩形的性质、勾股定理、三角形三边的关系.CGH三点共线时CG最短是解决问题的关键.把动点转化成了定点,问题就迎刃而解了..18、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题(共78分)19、(1)50,补图见解析;(2)306人;(3).【分析】(1)根据统计图可以求得本次调查的人数以及发言为和的人数,从而可以将直方图补充完整;(2)根据统计图中的数据可以估计在这一天里发言次数不少于12次的人数;(3)根据题意可以求得发言次数为和的人数,从而可以画出树状图,得到所抽的两位代表恰好都是男士的概率.【详解】解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是,即所抽的两位代表恰好都是男士的概率是.【点睛】本题考查列表法与树状图法、总体、个体、样本、样本容量、频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.20、(1)12;(2).【分析】(1)过点A作AH⊥x轴,垂足为点H,求出点A的坐标,即可求出k值;
(2)求出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值,进而求出AD的长.【详解】解:(1)过点作轴,垂足为点交于点,如图所示,,点的坐标为.为反比例函数图象上的一点,.(2)轴,,点在反比例函数上,,,∴.【点睛】本题考查了反比例函数与几何图形的综合题,涉及等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是求出相关点的坐标转化为线段的长度,再利用几何图形的性质求解.21、(1)0;(2),【分析】(1)根据特殊角的三角函数值代入计算即可;(2)对原方程变形后利用因式分解法求解即可.【详解】解:(1)2cos60°+4sin60°•tan30°﹣6cos245°(2)或解得:,【点睛】本题考查特殊角的三角函数值混合运算和因式分解法解一元二次方程,解题的关键是熟记特殊角的三角函数值和熟练掌握因式分解法解一元二次方程.22、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.23、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-【点睛】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.24、2【分析】根据DE∥BC得出△ADE∽△ABC,然后利用相似三角形的高之比等于相似比即可求出DE的长度.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AG⊥BC,∴AF⊥DE,∴=,∵BC=10,AF=1,FG=2,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风电工程水暖工程承包合同
- 旅游建筑地暖施工合同范本
- 能源企业账户管理办法
- 人力资源招聘与选拔策略
- 盖瓦施工合同:体育装修升级
- 水上乐园监理工程师聘用协议
- 水处理设备工程合同管理策略
- 2024年度厦门商标租赁合同模板2篇
- 矿产资源合同履行
- 企业安全奖惩制度
- 2023年上海市中考英语试题及参考答案(word解析版)
- 《刑罚的体系和种类》课件
- 《杰出的科学家》课件
- 青岛版五四制五年级上册数学单元测试卷第三单元 包装盒-长方体和正方体(含答案)
- 井下电气安全培训课件
- 仓库降本增效方案培训课件
- 北京市西城区五年级数学(上)期末试卷(含答案)
- 脑血管病的一级预防
- (完整)中小学教师职称评定答辩题
- 沈从文先生在西南联大全文
- 3.1.2种子植物(第二课时)教案人教版生物七年级上册
评论
0/150
提交评论