海南省三亚市2022年数学九年级第一学期期末检测模拟试题含解析_第1页
海南省三亚市2022年数学九年级第一学期期末检测模拟试题含解析_第2页
海南省三亚市2022年数学九年级第一学期期末检测模拟试题含解析_第3页
海南省三亚市2022年数学九年级第一学期期末检测模拟试题含解析_第4页
海南省三亚市2022年数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣22.若2a=3b,则下列比列式正确的是()A. B. C. D.3.如图等边△ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s的速度向点C运动,点P沿A﹣B﹣C以2cm/s的速度也向点C运动,直到到达点C时停止运动,若△APQ的面积为S(cm2),点Q的运动时间为t(s),则下列最能反映S与t之间大致图象是()A. B.C. D.4.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种5.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)6.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a27.若反比例函数的图象经过点(2,-3),则k值是()A.6 B.-6 C. D.8.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥39.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则()A.S=1 B.S=2 C.1<S<2 D.S>210.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm11.顺次连结菱形各边中点所得到四边形一定是(​)A.平行四边形 B.正方形​ C.矩形​ D.菱形12.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个 B.14个 C.18个 D.28个二、填空题(每题4分,共24分)13.如图,是的外接圆,是的中点,连结,其中与交于点.写出图中所有与相似的三角形:________.14.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.15.方程x2=2的解是.16.一元二次方程x2﹣x﹣=0配方后可化为__________.17.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.18.如图,反比例函数y=(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连接AD,已知AC=1,BE=1,S△ACD=,则S矩形BDOE=______.三、解答题(共78分)19.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.20.(8分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且,求CD的长.21.(8分)如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.22.(10分)码头工人每天往一艘轮船上装载货物,装载速度(吨/天)与装完货物所需时间(天)之间的函数关系如图.(1)求与之间的函数表达式,并写出自变量的取值范围;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?23.(10分)解方程:(1);(2)24.(10分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.7525.(12分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.(2)求点B绕点O旋转到点B′的路径长(结果保留π).26.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2、C【分析】根据比例的性质即可得到结论.【详解】解:∵2a=3b,∴故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知其变形.3、C【分析】根据等边三角形的性质可得,然后根据点P的位置分类讨论,分别求出S与t的函数关系式即可得出结论.【详解】解:∵△ABC为等边三角形∴∠A=∠C=60°,AB=BC=AC=4当点P在AB边运动时,根据题意可得AP=2t,AQ=t∴△APQ为直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,图象为开口向上的抛物线,当点P在BC边运动时,如下图,根据题意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,图象为开口向下的抛物线;故选:C.【点睛】此题考查的是根据动点判定函数的图象,掌握三角形面积的求法、二次函数的图象及性质和锐角三角函数是解决此题的关键.4、B【解析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,,解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,,解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,,解得:x=32.4cm,y=21.6cm,x+y=32.4+21.6=54cm>45cm,故不成立;故只有一种截法.故选B.5、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.6、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.7、B【分析】直接把点代入反比例函数解析式即可得出k的值.【详解】∵反比例函数的图象经过点,

∴,解得:.

故选:B.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、A【解析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.9、B【分析】设点A(m,),则根据对称的性质和垂直的特点,可以表示出B、C的坐标,根据坐标关系得出BC、AC的长,从而得出△ABC的面积.【详解】设点A(m,)∵A、B关于原点对称∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故选:B【点睛】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A、B、C的坐标,从而得出△ABC的面积.10、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.11、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E.

F.

G、H分别是AB、BC、CD、AD的中点,

则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.

故四边形EFGH是平行四边形,

又∵AC⊥BD,

∴EH⊥EF,∠HEF=90°,

∴边形EFGH是矩形.

故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.12、A【分析】根据概率公式计算即可.【详解】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.二、填空题(每题4分,共24分)13、;.【分析】由同弧所对的圆周角相等可得,可利用含对顶角的8字相似模型得到,由等弧所对的圆周角相等可得,在和含公共角,出现母子型相似模型.【详解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中点,∴,∴∠EAD=∠ABD,∠ADB公共,∴.综上:;.故答案为:;.【点睛】本题考查的知识点是相似三角形的判定和性质,圆周角定理,同弧或等弧所对的圆周角相等的应用是解题的关键.14、【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴===,∴的长等于⊙O周长的四分之一,∵⊙O的半径为6,∴⊙O的周长==,∴的长等于,故答案为:.【点睛】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.15、±【解析】试题分析:根据二次根式的性质或一元二次方程的直接开平方法解方程即可求得x=±.考点:一元二次方程的解法16、【分析】移项,配方,即可得出选项.【详解】x2﹣x﹣=0x2﹣x=x2﹣x+=+故填:.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.17、1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:,解得,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.18、1【分析】根据三角形的面积求出CD,OC,进而确定点A的坐标,代入求出k的值,矩形BDOE的面积就是|k|,得出答案.【详解】∵AC=1,S△ACD=,∴CD=3,∵ODBE是矩形,BE=1,∴OD=1,OC=OD+CD=1,∴A(1,1)代入反比例函数关系式得,k=1,∴S矩形BDOE=|k|=1,故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质以及三角形的面积公式是解题的关键.三、解答题(共78分)19、(1);(2)(3)存在,(m为点P的横坐标)当m=时,【分析】(1)把A、B坐标代入二次函数解析式,求出a、b,即可求得解析式;(2)根据第(1)问求出的函数解析式可得出C点的坐标,根据C、P两点横坐标一样可得出P点的坐标,将△BCE的面积分成△PCE与△PCB,以PC为底,即可求出△BCE的面积.(3)设动点P的坐标为(m,m+2),点C的坐标为(m,),表示出PC的长度,根据,构造二次函数,然后求出二次函数的最大值,并求出此时m的值即可.【详解】解:(1)∵A()和B(4,6)在抛物线y=ax2+bx+6上,∴解得:,∴抛物线的解析式;(2)∵二次函数解析式为,∴顶点C坐标为,∵PC⊥x,点P在直线y=x+2上,∴点P的坐标为,∴PC=6;∵点E为直线y=x+2与x轴的交点,∴点E的坐标为∵=∴.(3)存在.设动点P的坐标是,点C的坐标为,∵∴∵,∴函数开口向下,有最大值∴当时,△ABC的面积有最大值为.【点睛】本题考查二次函数的综合应用.(1)中考查利用待定系数发求函数解析式,注意求出函数解析式后要再验算一遍,因为第一问的结果涉及后面几问的计算,所以一定要保证正确;(2)中考查三角形面积的计算,坐标系中三角形面积要以坐标轴或者平行于坐标轴的边为底,如果没有的话要利用割补法进行计算;(3)在(2)的基础上,求动点形成的三角形面积的最值,要设动点的坐标,然后构造相应的函数解析式,再分析最值.20、2(cm)【分析】先求出圆的半径,再通过作OP⊥CD于P,求出OP长,再根据勾股定理求出DP长,最后利用垂径定理确定CD长度.【详解】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE•sin∠DEB=,∴PD==,∴CD=2PD=2(cm).【点睛】本题考查了垂径定理,勾股定理及直角三角形的性质,根据题意作出辅助线,构造直角三角形及构造出符合垂径定理的条件是解答此题的关键.21、∠C=25°.【分析】连接OB,利用切线的性质OB⊥AB,进而可得∠BOA=50°,再利用外角等于不相邻两内角的和,即可求得∠C的度数.【详解】解:如图,连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,∵∠A=40°,∴∠BOA=50°,又∵OC=OB,∴∠C=∠BOA=25°.【点睛】本题主要考查切线的性质,解决此类题目时,知切点,则连半径,若不知切点,则作垂直.22、(1);(2)80吨【分析】(1))设y与x之间的函数表达式为y=,然后根据待定系数法求出解析式,然后根据k确定x的取值范围;(2)将x=5代入函数解析式求得y的值,即可解答.【详解】解:(1)由图像可知与成反比例函数设∵过点,∴∴与之间的函数表达式为;∴自变量的取值范围:(2)∵当时,答:平均每天至少要卸80吨货物.【点睛】本题考查了反比例函数的应用,弄清题意、确定反比例函数的解析式是解答本题的关键.23、(1),;(2),.【分析】(1)运用公式法解方程即可;(2)运用因式分解法解方程即可.【详解】(1)∵,∴,∴,;(2)移项,得:,提公因式得:,∴或,∴,;【点睛】本题主要考查解一元二次方程-公式法和因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.24、120m【分析】在Rt△ACD和Rt△BCD中,设CD=x,分别用x表示AD和BD的长度,然后根据已知AB=40m,列出方程求出x的值,继而可求得气球离地面的高度.【详解】设CD=x,在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠A=37°,∴tan37°=,∴AD=,∵AB=40m,∴AD﹣BD=﹣x=40,解得:x=120,∴气球离地面的高度约为120(m).答:气球离地面的高度约为120m.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数解直角三角形.25、(1)画图见解析;(2)点B绕点O旋转到点B′的路径长为.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)先计算出OB的长,然后根据弧长公式计算点B绕点O旋转到点B′的路径长.【详解】(1)如图,△A′B′C′为所作;(2)OB==3,点B绕点O旋转到点B′的路径长==π.【点睛】本题考查作图﹣旋转变换和旋转的性质,解题的关键是掌握旋转的性质.26、(1)详见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论