贵州省(黔东南黔南黔西南)2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
贵州省(黔东南黔南黔西南)2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
贵州省(黔东南黔南黔西南)2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
贵州省(黔东南黔南黔西南)2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
贵州省(黔东南黔南黔西南)2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是()A.8或6 B.10或8 C.10 D.82.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A.直接开平方法. B.配方法 C.公式法 D.分解因式法3.下列方程中是关于的一元二次方程的是()A. B. C., D.4.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.5.某商品先涨价后降价,销售单价由原来元最后调整到元,涨价和降价的百分率都为.根据题意可列方程为()A. B.C. D.6.已知,则下列各式中不正确的是()A. B. C. D.7.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔8.下列图案中是中心对称图形的有()A.1个 B.2个 C.3个 D.4个9.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.210.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.211.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.15012.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b2二、填空题(每题4分,共24分)13.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.14.已知,一个小球由地面沿着坡度的坡面向上前进10cm,则此时小球距离地面的高度为______cm.15.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.16.将函数y=5x2的图象向左平移2个单位,再向上平移3个单位,所得抛物线对应函数的表达式为__________.17.抛物线y=x2+3与y轴的交点坐标为__________.18.已知关于x的方程有两个实数根,则实数k的取值范围为____________.三、解答题(共78分)19.(8分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.20.(8分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?21.(8分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.22.(10分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).23.(10分)不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.24.(10分)如图,⊙为的外接圆,,过点的切线与的延长线交于点,交于点,.(1)判断与的位置关系,并说明理由;(2)若,求的长.25.(12分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)26.如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.【详解】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=因此这个三角形的外接圆半径为1.综上所述:这个三角形的外接圆半径等于8或1.故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键.2、D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D.3、A【分析】根据一元二次方程的定义解答.【详解】A、是一元二次方程,故A正确;

B、有两个未知数,不是一元二次方程,故B错误;

C、是分式方程,不是一元二次方程,故C正确;

D、a=0时不是一元二次方程,故D错误;

故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.4、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.5、A【分析】涨价和降价的百分率都为,根据增长率的定义即可列出方程.【详解】涨价和降价的百分率都为.根据题意可列方程故选A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列出方程.6、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.7、D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:第一个不是中心对称图形;第二个是中心对称图形;第三个不是中心对称图形;第四个是中心对称图形;故中心对称图形的有2个.故选B.【点睛】此题主要考查了中心对称图形,关键是找出对称中心.9、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.10、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.11、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B.【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数样本容量.12、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式二、填空题(每题4分,共24分)13、1【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd-ab=1,即可得出答案.【详解】设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴,∴cd-ab=1,∴k2-k1=1,故答案为:1.【点睛】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键.14、.【分析】利用勾股定理及坡度的定义即可得到所求的线段长.【详解】如图,由题意得,,设由勾股定理得,,即,解得则故答案为:.【点睛】本题考查了勾股定理及坡度的定义,掌握理解坡度的定义是解题关键.15、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0<a≤1,综合可得0<a<1,故满足条件的整数a的值为1,2.【详解】解不等式组,可得,∵不等式组有且仅有5个整数解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非负数解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴满足条件的整数a的值为1,2,∴满足条件的整数a的值之和是1+2=1,故答案为:1.【点睛】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.16、y=5(x+2)2+3【分析】根据二次函数平移的法则求解即可.【详解】解:由二次函数平移的法则“左加右减”可知,二次函数y=5x2的图象向左平移2个单位得到y=,由“上加下减”的原则可知,将二次函数y=的图象向上平移3个单位可得到函数y=,故答案是:y=.【点睛】本题主要考查二次函数平移的法则,其中口诀是:“左加右减”、“上加下减”,注意数字加减的位置.17、(0,3)【分析】由于抛物线与y轴的交点的横坐标为0,代入解析式即可求出纵坐标.【详解】解:当x=0时,y=3,则抛物线y=x2+3与y轴交点的坐标为(0,3),故答案为(0,3).【点睛】此题主要考查了抛物线与坐标轴的交点坐标与解析式的关系,利用解析式中自变量为0即可求出与y轴交点的坐标.18、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.三、解答题(共78分)19、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>−,在m>−的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m²=8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-(2)选取一个整数0,则原方程为,x²-2x=0解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【分析】(1)根据“每1吨化工原料可以加工成化工产品0.8吨”,即可求出;(2)根据总利润=总售价-总成本即可求出y关于x的函数关系式;(3)先求出y=38400元时,x的值,然后根据二次函数图象的开口方向和增减性即可求出x的取值范围.【详解】(1)x÷0.8=x吨,故答案为:x;故答案为:x;(2)根据题意得,y=x[1600﹣4(x﹣50)]﹣x•800=﹣4x2+800x,则y关于x的函数关系式为:y=﹣4x2+800x;(3)当y=38400时,﹣4x2+800x=38400,x2﹣200x+9600=0,(x﹣120)(x﹣80)=0,x=120或80,∵﹣4<0,∴当y≥38400时,80≤x≤120,∴100≤x≤150,∴如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【点睛】此题考查的是二次函数的应用,掌握实际问题中的等量关系和二次函数的增减性是解决此题的关键.21、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)【解析】试题分析:(1)把点A、B的坐标分别代入函数y=k1x(k1≠0)与函数中求出k1和k2的值,即可得到两个函数的解析式;(2)把(1)中所得两个函数的解析式组成方程组,解方程组即可得到点B的坐标.试题解析:解:(1)把点A(2,1)分别代入y=k1x与可得:,k2=2,∴正比例函数、反比例函数的表达式分别为:,;(2)由题意得方程组:,解得:,,∴点B的坐标是(-2,-1).22、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图.23、(1);(2).【解析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24、(1)OE∥BC.理由见解析;(2)【分析】(1)连接OC,根据已知条件可推出,进一步得出结论得以证明;(2)根据(1)的结论可得出∠E=∠BCD,对应的正切值相等,可得出CE的值,进一步计算出OE的值,在Rt△AFO中,设OF=3x,则AF=4x,解出x的值,继而得出OF的值,从而可得出答案.【详解】解:(1)OE∥BC.理由如下:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论