广东省韶关市2022年数学九年级第一学期期末综合测试试题含解析_第1页
广东省韶关市2022年数学九年级第一学期期末综合测试试题含解析_第2页
广东省韶关市2022年数学九年级第一学期期末综合测试试题含解析_第3页
广东省韶关市2022年数学九年级第一学期期末综合测试试题含解析_第4页
广东省韶关市2022年数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°2.如图,中,,,,则的值是()A. B. C. D.3.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5 B.平均数是5 C.众数是6 D.方差是64.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为()A. B. C. D.5.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.126.下列各组中的四条线段成比例的是()A.4cm,2cm,1cm,3cmB.1cm,2cm,3cm,5cmC.3cm,4cm,5cm,6cmD.1cm,2cm,2cm,4cm7.已知关于的一元二次方程的两根为,,则一元二次方程的根为()A.0,4 B.-3,5 C.-2,4 D.-3,18.如图所示,已知圆心角,则圆周角的度数是()A. B. C. D.9.在△ABC中,∠C=90°,AC=8,BC=6,则sinB的值是()A. B. C. D.10.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交 B.外切 C.内切 D.内含二、填空题(每小题3分,共24分)11.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是_____.12.若,分别是一元二次方程的两个实数根,则__________.13.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.14.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)15.把方程2x2﹣1=x(x+3)化成一般形式是_________.16.半径为4cm,圆心角为60°的扇形的面积为cm1.17.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).18.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.三、解答题(共66分)19.(10分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.20.(6分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.21.(6分)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym1.(1)则AE=m,BC=m;(用含字母x的代数式表示)(1)求矩形区域ABCD的面积y的最大值.22.(8分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.(1)探索:CE与BF有何数量关系和位置关系?并说明理由;(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.23.(8分)化简:,并从中取一个合适的整数代入求值.24.(8分)解方程:x2-7x-18=0.25.(10分)黎托社区在创建全国卫生城市的活动中,随机检查了本社区部分住户10月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(.小于5天;.5天;.6天;.7天).(1)扇形统计图部分所对应的圆心角的度数是______.(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.26.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(Ⅰ)若花园的面积是252m2,求AB的长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.2、C【分析】根据勾股定理求出a,然后根据正弦的定义计算即可.【详解】解:根据勾股定理可得a=∴故选C.【点睛】此题考查的是勾股定理和求锐角三角函数值,掌握利用勾股定理解直角三角形和正弦的定义是解决此题的关键.3、C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C.【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.4、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:;故选:A.【点睛】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.5、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.6、D【分析】四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.【详解】A.从小到大排列,由于1,所以不成比例,不符合题意;B.从小到大排列,由于1,所以不成比例,不符合题意;C.从小到大排列,由于3,所以不成比例,不符合题意;D.从小到大排列,由于1,所以成比例,符合题意;故选D.【点睛】此题主要考查线段成比例的关系,解题的关键是通过计算判断是否成比例.7、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得.【详解】∵关于的一元二次方程的两根为,∴或∴整理方程即得:∴将代入化简即得:解得:,故选:B.【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.8、A【详解】是同弧所对的圆周角和圆心角,,因为圆心角∠BOC=100°,所以圆周角∠BAC=50°【点睛】本题考查圆周角和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答9、A【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB==10,∴sinB=.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.10、C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm和3cm,圆心距为3.5cm,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C.【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.二、填空题(每小题3分,共24分)11、-1.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,﹣a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【详解】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,,∴△COD≌△OAE,∴OD=AE,CD=OE,∴点C的坐标为(,﹣a),×(﹣a)=﹣1,∴k=﹣1.故答案为:﹣1.【点睛】本题是一道综合性较强的题目,用到的知识点有,反比例函数的性质,等腰三角形的性质,全等三角形的判定与性质等,充分考查了学生综合分析问题的能力.此类题目往往需要借助辅助线,使题目更容易理解.12、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,∴故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题13、【解析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出的值.【详解】如图:过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,则E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直线OB的解析式y=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直线OA的解析式y=x,∴F(,2a),∴==,故答案为:【点睛】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.14、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,

∴四边形ABCD是平行四边形,

∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;

当AC⊥BD时,四边形ABCD是菱形.

故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.15、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案为x2﹣3x﹣1=1.16、.【解析】试题分析:根据扇形的面积公式求解.试题解析:.考点:扇形的面积公式.17、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.18、或【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【详解】由题意得:矩形的另一边长=24÷2−x=12−x,则y=x(12−x)=−x2+12x.故答案为或【点睛】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.三、解答题(共66分)19、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.20、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.【详解】解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),∴,解得.∴抛物线的解析式为.(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得.∴直线AC的解析式为.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,).∵点P的横坐标为m,点P在抛物线上,∴点P的坐标为(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM为直角三角形.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.21、(1)1x,(80﹣4x);(1)1100m1.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的1倍,可得出AE=1BE,设BE=x,则有AE=1x,BC=80﹣4x;(1)利用二次函数的性质求出y的最大值,以及此时x的值即可.【详解】(1)设BE的长度为xm,则AE=1xm,BC=(80﹣4x)m,故答案为:1x,(80﹣4x);(1)根据题意得:y=3x(80﹣4x)=﹣11x1+140x=﹣11(x﹣10)1+1100,因为﹣11,所以当x=10时,y有最大值为1100.答:矩形区域ABCD的面积的最大值为1100m1.【点睛】本题考查二次函数的性质和应用,解题的关键是掌握二次函数的性质和应用.22、(1)CE=BF,CE⊥BF,理由见解析;(2)【分析】(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.【详解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵AE=AF,AB=AC,∴△AEC≌△AFB(SAS)∴CE=BF,∠ABF=∠ACE,∵∠ADC=∠BDP,∴∠BPD=∠CAD=90°,∴CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,∵把△AEF绕点A顺时针旋转至△AE'F′,∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,∵∠E'AC=60°,∠AHE'=90°,∴∠AE'H=30°,∴AH=AE'=,E'H=AH=,∴HC=AC﹣AH=,∴E'C==,∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,∴△F'AB≌△E'AC(SAS)∴BF'=CE'=.【点睛】本题主要考查勾股定理和三角形全等的判定和性质定理,旋转的性质,添加辅助线,构造直角三角形,是解题的关键.23、-x-1,-1.【分析】先将原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论