版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个2.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称3.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)4.一次函数y=bx+a与二次函数y=ax2+bx+c(a0)在同一坐标系中的图象大致是()A. B. C. D.5.关于抛物线的说法中,正确的是()A.开口向下 B.与轴的交点在轴的下方C.与轴没有交点 D.随的增大而减小6.如图,在中,,于点D,,,则AD的长是()A.1. B. C.2 D.47.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.8.在中,,,,则的值是()A. B. C. D.9.如图,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是()A.第一象限 B.第一、三象限 C.第二、四象限 D.第一、四象限10.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元 B.400元 C.800元 D.1250元11.用配方法解方程时,配方结果正确的是()A. B.C. D.12.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.2二、填空题(每题4分,共24分)13.如图,AB为的直径,弦CD⊥AB于点E,点F在圆上,且=,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.14.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.15.二次函数的图象与y轴的交点坐标是__.16.二次函数y=图像的顶点坐标是__________.17.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.18.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.三、解答题(共78分)19.(8分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.20.(8分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.21.(8分)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.22.(10分)数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式;(2)确定自变量的取值范围是(3)列出与的几组对应值.······(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为时,盒子的体积最大,最大值约为.(估读值时精确到)23.(10分)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为多少?24.(10分)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少?25.(12分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=.26.2019年9月30日,由著名导演李仁港执导的电影《攀登者》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用模球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号1-4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出随机摸球所有可能的结果;(2)分别求出小亮和小丽获胜的概率,并判断这种游戏规则对两人公平吗?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.2、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.3、C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴点C坐标,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴点B坐标,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.4、C【解析】A.由抛物线可知,a>0,x=−<0,得b<0,由直线可知,a>0,b>0,故本选项错误;B.由抛物线可知,a>0,x=−>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选C.5、C【分析】根据题意利用二次函数的性质,对选项逐一判断后即可得到答案.【详解】解:A.,开口向上,此选项错误;B.与轴的交点为(0,21),在轴的上方,此选项错误;C.与轴没有交点,此选项正确;D.开口向上,对称轴为x=6,时随的增大而减小,此选项错误.故选:C.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,熟练掌握并利用二次函数的性质解答.6、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.7、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,
∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比8、A【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA==.故选A.【点睛】本题考查了锐角正弦函数的定义.9、C【分析】根据输入程序,求得y与x之间的函数关系是y=-,由其性质判断所在的象限.【详解】解:x的倒数乘以-5为-,即y=-,则函数过第二、四象限,故选C.【点睛】对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.10、D【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.【点睛】此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.11、A【分析】利用配方法把方程变形即可.【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.12、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题(每题4分,共24分)13、;【分析】如图(见解析),连接CO、DO,并延长DO交CF于H,由垂径定理可知CE,在中,可以求出半径CO的长;又由=和垂径定理得,根据圆周角定理可得,从而可知,在中可求出FG,也就可求得CF的长度;在中利用勾股定理求出DH,再求出,同样地,在中利用余弦函数求出OG,从而可求得.【详解】,,,(垂径定理)连接,设,则在中,解得,连接DO并延长交CF于H=,由垂径定理可知,是所对圆周角,是所对圆心角,且=2,,由勾股定理得:,.【点睛】本题考查了垂径定理、圆周角定理、直角三角形中的余弦三角函数,通过构造辅助线,利用垂径定理和圆周角定理是解题关键.14、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.15、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.16、(-5,-3)【分析】根据顶点式,其顶点坐标是,对照即可解答.【详解】解:二次函数是顶点式,顶点坐标为.故答案为:.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.17、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.18、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,
,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.三、解答题(共78分)19、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【点睛】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.20、(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.21、(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为或秒时,使得△BDE与△ABC相似.【分析】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(3)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【详解】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=11∴BG=8,∴AG=1.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.3∴(10﹣t)•t=13解得t=3.答:t为3秒时,△BDE的面积为7.3cm3.(3)存在.理由如下:①当BE=DE时,△BDE与△BCA,∴=即=,解得t=,②当BD=DE时,△BDE与△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】此题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.22、(1);(2);(3)3,2;(4)0.55【分析】(1)根据长方形和正方形边长分别求出长方体的长、宽、高,然后即可得出和的关系式;(2)边长都大于零,列出不等式组,求解即可;(3)将的值代入关系式,即可得解;(4)根据函数图象,由最大值即可估算出的值.【详解】(1)由题意,得长方体的长为,宽为,高为∴y和x的关系式:(2)由(1)得∴变量x的取值范围是;(3)将和代入(1)中关系式,得分别为3,2;(4)由图象可知,与3.03对应的值约为0.55.【点睛】此题主要考查展开图折叠成长方体,以及与函数的综合运用,熟练掌握,即可解题.23、5【分析】作辅助线构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH,得出DG和AG的长度,即可得出答案.【详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC•DH=10,=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=或(舍),故答案为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光学纤维产业链招商引资的调研报告
- 帐帘产业链招商引资的调研报告
- 蜡烛滴环商业机会挖掘与战略布局策略研究报告
- 图像传送装置出租行业经营分析报告
- 学生德育与心理健康的融合
- 校内美术比赛活动方案计划
- 窗帘布料销售供应合同三篇
- 灌溉用水管理的智能化应用计划
- 教育资源的优化配置与使用计划
- 如何制定可行的生产目标计划
- 突发事件药事管理应急预案(共5篇)
- 中国铁路国际有限公司招聘考试试卷2022
- GB/T 44399-2024移动式金属氢化物可逆储放氢系统
- 物流行业绿色物流发展实施方案
- 2024-2030年中国危化品行业发展趋势与投资前景展望报告
- 2024中小企业数字化水平评测指标
- 化工(危险化学品)企业主要负责人、安管员安全生产管理专项培训考核试卷(附参考答案)
- 2024年人教版小学三年级语文(上册)期中考卷及答案
- 人教版2024-2025学年七年级地理上册 第二章 地图 单元测试卷
- 药店执业药师合同范本
- 《信息化项目验收工作规范》
评论
0/150
提交评论